
Condensed Matter Option SUPERCONDUCTIVITY Handout

Syllabus

The lecture course on Superconductivity will be given in 6 lectures in Trinity term.

1. Introduction to superconductivity.

2. The London equations

3. Ginzburg-Landau theory

4. The Josephson effect

5. BCS theory

6. Unconventional superconductors

Reading

• ‘Superconductivity, Superfluids and Condensates’, by J. F. Annett, OUP 2004: the best book for the course.

• ‘Solid State Physics’ N. W. Ashcroft and N. D. Mermin, chapters 34, is a good overview of some of the
material in the course, though out of date on experiments and written in cgs units. The relevant chapters in
the solid state texts by Kittel can also be consulted.

• An advanced but informative description of the ideas concerning broken symmetry may be found in the
second chapter of ‘Basic Notions of Condensed Matter Physics’, P. W. Anderson (Benjamin-Cummings 1984).
For enthusiasts only!

• A popular account of the history of superconductivity can be found in my own ‘Superconductivity: A Very
Short Introduction’, OUP 2009.

Web-page for the course: http://users.ox.ac.uk/∼sjb/supercond.html
Maxwell’s equations:

In free space, Maxwell’s equations are

∇ ·ε = ρ/ε0 (1)
∇ ·B = 0 (2)

∇×ε = −∂B
∂t

(3)

∇×B = µ0J + ε0µ0
∂ε
∂t
, (4)

and describe the relationships between the electric field ε, the magnetic induction B, the charge density ρ and
the current density J. Equation 1 shows that electric field diverges away from positive charges and converges
into negative charges; charge density therefore acts as a source or a sink of electric field. Equation 2 shows
that magnetic fields have no such divergence; thus there are no magnetic charges (monopoles) and lines of B
field must just exist in loops; they can never start or stop anywhere. Equation 3 shows that you only get loops
of electric field around regions in space in which there is a changing magnetic field. This leads to Faraday’s
law of electromagnetic induction. Equation 4, in the absence of a changing electric field, shows that loops of
magnetic induction are found around electric currents. In the presence of matter, we have:

∇ ·D = ρfree (5)
∇ ·B = 0 (6)

∇×ε = −∂B
∂t

(7)

∇×H = Jfree +
∂D
∂t

, (8)



Meissner effect

Superconducting transition temperatures

Substance Tc (K)
Al 1.196
Hg 4.15
In 3.40
Nb 9.26
Pb 7.19
Sn 3.72
Zn 0.875
Nb3Sn 18.1
V3Si 17
Nb3Ge 23.2
BaPbO3 0.4
BaxLa5−xCu5Oy 30–35
YBa2Cu3O7−δ 95
Bi2Sr2Ca2Cu3O10 110
Hg0.8Pb0.2Ba2Ca2Cu3Ox 133
HgBa2Ca2Cu3O8+δ at 30 GPa 164
URu2Si2 1.3
MgB2 39
YNi2B2C 12.5
(TMTSF)2ClO4 1.4
K3C60 19
Cs3C60 at 7 kbar 38
(BEDT-TTF)2Cu(NCS)2 10.4
(BEDT-TTF)2Cu[N(CN)2]Br 11.8
Sm[O1−xFx]FeAs 55



Thermodynamics

At constant pressure dG = −S dT −m dB. Therefore, when T is constant and less than TC

Gs(B)−Gs(0) = −
∫ B

0
mdB. (9)

Here m = MV and M = −H = −B/µ0. This implies that

Gs(B)−Gs(0) = −
∫ B

0
mdB =

V B2

2µ0
. (10)

At B = Bc, we have that
Gs(Bc) = Gn(Bc) = Gn(0) (11)

because

• The superconducting and normal states are in equilibrium

• We assume no field dependence in Gn

Hence

Gn(0)−Gs(0) =
V B2

2µ0
, (12)

and therefore
Sn − Ss = − V

µ0
Bc

dBc

dT
> 0, (13)

because
dBc

dT
< 0. (14)

Therefore the entropy of the superconducting state is lower than the normal state. Differentiation
yields

Cn − Cs = −TV
µ0

[
Bc

d2Bc

dT 2
+
(

dBc

dT

)2
]
. (15)

London equation

Fritz London, working with Heinz London, realised that superconductivity was due to a macroscopic
quantum phenomenon in which there was long range order of the momentum vector. This implies
condensation in momentum space. Fritz London also realised that it is the rigidity of the
superconducting wave function ψ which is responsible for diamagnetism.

The London equation is

J = −nq
2

m
A (16)

This leads to an equation for the magnetic field B = ∇×A of the form

∇2B =
B
λ2

(17)

This differential equation can be solved in various geometries.



A reminder: Canonical momentum

In classical mechanics the Lorentz force F on a particle with charge q moving with velocity v in an electric field ε and
magnetic field B is

F = q(ε + v ×B). (18)

Using F = mdv/dt, B = ∇×A and ε = −∇V − ∂A/∂t, where V is the electric potential, A is the magnetic vector
potential and m is the mass of the particle, eqn 18 may be rewritten as

m
dv

dt
= −q∇V − q ∂A

∂t
+ qv × (∇×A). (19)

The vector identity
v × (∇×A) = ∇(v ·A)− (v · ∇)A (20)

can be used to simplify eqn 19 leading to

m
dv

dt
+ q
(
∂A

∂t
+ (v · ∇)A

)
= −q∇(V − v ·A). (21)

Note that mdv/dt is the force on a charged particle measured in a coordinate system that moves with the particle.
The partial derivative ∂A/∂t measures the rate of change of A at a fixed point in space. We can rewrite eqn 21 as

d

dt
(mv + qA) = −q∇(V − v ·A) (22)

where dA/dt is the convective derivative of A, written as

dA

dt
=
∂A

∂t
+ (v · ∇)A, (23)

which measures the rate of change of A at the location of the moving particle. Equation 22 takes the form of Newton’s
second law (i.e. it reads ‘the rate of change of a quantity that looks like momentum is equal to the gradient of a quantity
that looks like potential energy’). We therefore define the canonical momentum

p = mv + qA (24)

and an effective potential energy experienced by the charge particle, q(V − v ·A), which is velocity-dependent. The
canonical momentum reverts to the familiar momentum mv in the case of no magnetic field, A = 0. The kinetic energy
remains equal to 1

2
mv2 and this can therefore be written in terms of the canonical momentum as (p− qA)2/2m.

Gauge symmetry

The relationship between fields E and B and potentials φ and A is

B = ∇×A (25)
E = −∇φ− Ȧ. (26)

A scalar function χ can allow one to alter the potentials using

A → A +∇χ (27)
φ → φ− χ̇ (28)

and E and B are unaltered. A choice of χ is called a choice of gauge. However, the London equation

J = −nq
2

m A only works in one choice of gauge, known as the London gauge. The continuity equation
ρ̇+∇·J = 0 in the DC case is just ∇·J = 0 and so the London gauge amounts to choosing ∇·A = 0.
Notice that the momentum p = mv + qA is therefore not gauge invariant either:

p→ p + q∇χ (29)

If a wave function has a phase θ which depends on position in space, i.e. ψ(r) = ψeiθ(r), then since
p = −ih̄∇ and

−ih̄∇eiθ(r) = h̄∇θeiθ(r), (30)

then we see that this phase (and hence the wave function) is also not gauge invariant. If

θ → θ +
qχ

h̄
, (31)



then mv is gauge invariant. Note here that

mv = h̄∇θ − qA, (32)

and so the effect of the gauge transformations on θ and A cancel out.

Flux quantization

Flux quantization leads to the equation Φ = NΦ0 where N is an integer and Φ0 is the flux quantum:

Φ0 =
h

2e
. (33)

The 2e in this equation represents the charge of the superconducting carrier, and experiment implies
that the carrier consists of a pair of electrons.

The first evidence for this pairing came from the data shown below [B. S. Deaver and W. M. Fairbank,
Phys. Rev. Lett. 7, 43 (1961)]; this is from an experiment on a cylinder made of tin (Sn). Note the
quaint oldy-woldy units.

The experiment shown below [C. E. Gough et al, Nature 326, 855 (1987)] tried a similar experiment,
this time using a ring made out of a high-Tc superconductor (Y1.2Ba0.8CuO4). What is shown here
is the output of an rf-SQUID magnetometer. The ring was exposed to a source of electromagnetic
noise so that the flux varied through the ring. Once the output of the rf-SQUID was calibrated, one
could show that the flux jumps were 0.97±0.04 (h/2e), confirming that the charge carriers in the
high-Tc materials were pairs of electrons.



Ginzburg-Landau theory

In the lectures, we will motivate the Ginzburg-Landau expression:

Fs = Fn +
∫

d3r

[
a(T )|ψ|2 +

b

2
|ψ|4 +

1
2m
| − ih̄∇ψ + 2eAψ|2 +

(B −B0)2

2µ0

]
(34)

This yields expressions for the penetration depth λ:

λ =

√
mb

4µ0e2|a(T )| (35)

and the coherence length ξ:

ξ =

√
h̄2

2m|a(T )| . (36)

Part of the derivation from the lectures is included here: When the magnetic field can be ignored (and setting A = 0),
we have

Fs = Fn +

∫
d3r f, (37)

where f = a(T )|ψ|2 + b
2
|ψ|4 + h̄2

2m
|∇ψ|2. If ψ is varied, then

df = 2aψ dψ + 2bψ3 dψ +
h̄2

2m
d|∇ψ|2, (38)

and d|∇ψ|2 = |∇(ψ + dψ)|2 − |∇ψ|2 = 2∇ψ · ∇(dψ). In the integral, the term ∇ · [∇ψ dψ] = (∇2ψ) dψ +∇ψ · d∇ψ
gives a surface contribution, and hence

df = 2dψ[(a+ bψ2)ψ − h̄2

2m
∇2ψ] = 0 (39)

for any ψ. This looks like a non-linear Schrödinger equation. Near Tc we can neglect the bψ2 term because ψ → 0 and
then the equation takes the form

∇2ψ =
ψ

ξ2
(40)

where ξ =
√

h̄2

2m|a(T )| .

The Ginzburg-Landau parameter κ is defined by κ = λ/ξ. If κ < 1/
√

2, we have a type I supercon-
ductor. If κ > 1/

√
2, we have a type II superconductor.

The figure shows the vortex lattice imaged in NbSe2 (a type II su-
perconductor with a transition temperature of 7.2 K and a critical
field of 3.2 T) by tunneling into the superconducting gap edge with
a low-temperature scanning-tunneling microscope. The magnetic
field used is 1 T. H. F. Hess, R. B. Robinson, R. C. Dynes, J. M.
Valles, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).

For a square vortex lattice of spacing d, we have that Φ0 = Bd2 and so d = (Φ0/B)1/2. For a
triangular vortex lattice d = (2Φ0/

√
3B)1/2.



Type II superconductors

The Ginzburg-Landau parameter κ is defined by κ = λ/ξ and if κ > 1/
√

2, we have a type II
superconductor. In this case vortices will form into a lattice for fields between Bc1 and Bc2. The
phase diagram is shown below.

Silsbee’s rule

For a wire of radius a, the critical current is related to the critical field by Ic = 2πaBc/µ0 .

The Josephson effect

• The DC Josephson effect: I = IJ sinφ, where φ is the phase difference across the Josephson
junction.

• The AC Josephson effect: h̄φ̇ = 2eV so that I = IJ sin(ωJt+ φ0) where ωJ = 2eV/h̄.

• The inverse AC Josephson effect: For an ac voltage V = V0 + Vrf cosωt, we have that

I = IJ sin(ωJt+ φ0 +
2eVrf

h̄ω
sinωt)

I = IJ

∞∑
n=−∞

(−1)nJn
(

2eVrf

h̄ω

)
sin[(ωJ − nω)t+ φ0]

I0

V/R

R

I0

V/R

R C

A perfect Josephson junction (signified by the
cross) can be inserted in various electrical cir-
cuits. (A real Josephson junction may well
have some real resistance or capacitance so
this circuit can be thought of as an attempt
to model real junctions.)

• The resistively shunted Josephson (RSJ) model yields

I0 = IJ sinφ+
V

R
= IJ sinφ+

h̄φ̇

2eR
. (41)

Adding in a capacitor gives

I0 = IJ sinφ+
V

R
+ CV̇ = IJ sinφ+

h̄φ̇

2eR
+
h̄Cφ̈

2e
. (42)

This can be rewritten as
mφ̈ = −∂U

∂φ
− h̄

2eR
φ, (43)

where m = h̄C/2e and U = −IJ cosφ− I0φ is the tilted washboard potential.



• The gauge invariant phase difference is written as

φ = θ1 − θ2 − 2e
h̄

∫ 2

1
A · dl (44)

This expression is used to explain the behaviour of the SQUID Superconducting Quantum
Interference Device.

Strongly underdamped superconductor-insulator-superconductor (SIS) junction. The current-voltage
characteristic (I horizontal, V vertical) for a Nb–Al2O3 –Nb junction [left] without and [right] with
microwave radiation of 70 GHz.

Highly damped superconductor-normal-superconductor (SNS) junction. The current-voltage charac-
teristic (I horizontal, V vertical) for a Nb–PdAu–Nb junction [left] without and [right] with microwave
radiation of 10 GHz.

The current-voltage characteristic (I horizontal,
V vertical) for a high-Tc Josephson junction un-
der microwave illumination. Data are shown for
increasing microwave power.



The isotope effect

The transition temperature Tc ∝M−1/2 where M is the mass of the isotope.

T
c
(K

)

M−1/2

M

T
c
(K

)

M−1/2

M

This is very good evidence for the role of phonons in superconductivity.

Creation and annihilation operators

We define a creation operator â† and an annihilation operator â for the harmonic oscillator problem:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2. (45)

Since [x̂, p̂] = ih̄ we have that [â, â†] = 1. Furthermore, we can write

â†|n〉 =
√
n+ 1|n+ 1〉 (46)

â|n〉 =
√
n|n− 1〉 (47)

â†â|n〉 = n|n〉, (48)

and hence â†â is the number operator. The Hamiltonian becomes

Ĥ = h̄ω(â†â+
1
2

), (49)

and the eigenvalues are E = (n+ 1
2)h̄ω. Note that

|n〉 =
1√
n!

(â†)n|0〉. (50)
Coherent states

A coherent state |α〉 is defined by

|α〉 = C

[
|0〉+

α√
1!
|1〉+

α2

√
2!
|2〉+

α3

√
3!
|3〉+ · · ·

]
, (51)

where α = |α|eiθ is a complex number. Hence

|α〉 = C

[
1 +

αâ†√
1!

+
(αâ†)2

√
2!

+
(αâ†)3

√
3!

+ · · ·
]
|0〉, (52)

This state can be written |α〉 = e−|α|
2/2 exp(αâ†)|0〉 . The coherent state is an eigenstate of the

annihilation operator, so that â|α〉 = α|α〉, and has a well-defined phase but an uncertain number of
particles.



• ĉ†kσ is a creation operator for an electron with momentum k and spin σ.

• ĉkσ is a annihilation operator for an electron with momentum k and spin σ.

• P̂ †k = ĉ†k↑ĉ
†
−k↑ is a pair creation operator.

Note that we can write the Fermi sea as

|Fermi sea〉 =
∏
k<kF

P̂ †kσ|0〉. (53)

The BCS wave function will be written as a product of coherent states of pairs:

|ΨBCS〉 = constant×
∏
k

exp(αkP̂
†
k )|0〉. (54)

Absorption of infra-red radiation

Heat capacity data

Temperature dependence of the gap



BCS theory

The derivation of BCS theory is rather involved and only an outline is given here. For more details,
consult the books by Annett and by Schrieffer. This material is provided in this handout for interest
only and the less-interested reader need only focus on the boxed results.

The BCS trial wave function can be written as a product of coherent states of pairs (we will drop
the hats from the operators now):

|ΨBCS〉 = constant×
∏
k

exp(αkP
†
k)|0〉, (55)

where P †k is a pair creation operator. In the lecture, we showed that this could be written

|ΨBCS〉 =
∏
k

(uk + vkP
†
k)|0〉, (56)

where uk and vk are variational parameters which can be adjusted to minimise the energy.

The BCS Hamiltonian is

H =
∑
k,σ

εkc
†
kσckσ − |geff |2

∑
k,k′

c†k↑c
†
−k↓c−k′↓ck′↑, (57)

where the first term represents the kinetic energy and the second term accounts for the electron
phonon interaction. This Hamiltonian is applied to the BCS Hamiltonian, and the energy is min-
imised with respect to the parameters uk and vk. The results of this are that

|uk|2 =
1
2

(
1 +

εk − µ
Ek

)
(58)

|vk|2 =
1
2

(
1− εk − µ

Ek

)
(59)

Ek =
√

(εk − µ)2 + |∆|2. (60)

These results are plotted in the graphs below. Ek can be interpreted as the energy of an electronic
excitation (note that both electron and hole solutions emerge). The minimum electronic excitation
energy is the energy gap ∆.

k-

E
k

k-

k k



The gap parameter is defined by ∆ = |geff |2
∑

k ukv
∗
k. One also finds that ukv

∗
k = ∆/(2Ek). These

two equations lead to the BCS gap equation at T = 0:

∆ = |geff |2
∑
k

∆
2Ek

. (61)

Writing λ = |geff |2g(EF), where g(EF) is the density of states at the Fermi level, this becomes

∆ = λ

∫ h̄ωD

0

∆ dε√
∆2 + ε2

, (62)

and so
1
λ

=
∫ h̄ωD

0

dε√
∆2 + ε2

= sinh−1
(
h̄ωD

∆

)
. (63)

Since ∆� h̄ωD, we have that e1/λ/2 ≈ h̄ωD/∆ and so

∆ ≈ 2h̄ωDe
−1/λ . (64)

When T 6= 0, we must replace eqn 62 by

∆ = λ

∫ h̄ωD

0

∆ dε√
∆2 + ε2

[1− 2f(ε)], (65)

where f(ε) is the Fermi-Dirac function. Hence, for T = Tc we have that ∆ = 0 and so

1
λ

=
∫ xD

0

tanhx
x

dx, (66)

where xD = h̄ωD/2kBTc and hence

kBTc = 1.13h̄ωDe
−1/λ . (67)

Eqns 64 and 67 can be combined to yield

2∆(0) = 3.52kBTc . (68)

Experimental values are given in the following table:

Material 2∆(0)/kBTc

Zn 3.2
Al 3.4
In 3.6
Hg 4.6
Pb 4.3
Nb 3.8
K3C60 3.6
YBa2Cu3O7−δ 4.0
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