Chapter 6

Fourier series

Last updated: 01 Dec 2010.
Syllabus section:
6. Fourier series: full, half and arbitrary range series. iBaval’'s Theorem.

Fourier series provide a way to do various calculations watid to analyse the behaviour of, functions
which areperiodic: this means that they repeat the same values in a regularpatt are defined in a finite
range. Specifically, a function which jgeriodic with periodL will obey an equation

f(x+L)=f(x) for all x

and to start with, we will assunie= 2 also for convenience. We already know thatimoand simxfor any
integem have period 2. (So, of course, do the other trigopnometric functions suctaex, but these have the
disadvantage of becoming unbounded at certain valuesaegis unbounded at = 11/2).

The basic principle of Fourier series is to express our picifunctionf (x) as an infinite sum of sine and
cosine functions,

(o)

f(x) = %(an CosNX+ by sinnx)

for a periodic and piecewise differentiablé¢x) (in fact, for any function defined on a range of lengtt) 2
We will slightly modify this way of writing the series soon.

Such a series splité into pieces of different “frequency”: geometrically, eaghthe simx andcosnx
terms has exactlp positive and negative“wiggles” over the rangec& < 211, and thean, b, are constants
telling us how much varies at each different frequency.

This technique (and its generalisation to Fourier trama&rhas a large number of practical applications,
including: resolution of sound waves into their differereduencies, e.g. in MP3 players; telecommunica-
tions and Wi-Fi; computer graphics and image processingo@smy and optics; climate variation; water
waves; periodic behaviour of financial measures, etc.
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6.1 Full range Fourier series

As above, the idea is that we have a given functigx) defined for a range of values gfof length 21, say
—n< x < 1T, now we approximate this function as an infinite sum of trigaretric functions, as

f(x) ~ S(x) = 320+ Y ancosnx+ Y bysinnx. (6.1)
n=1 n=1

whereap, b, are an infinite series of constants to be determined. Thé-highd side of thisS(x) for short, is
called theFourier seriesfor f(x), and the set of coefficients, b, are called thé-ourier coefficients Here
the%ao is really a cos@= 1 constant term, and m}ais putin for convenience as we see below. (There is no
point in including abg term since sinf= 0).

Clearly, to make progress we have to actually calculataghie,; this looks very hard since we there are
infinitely many of them, but is actually straightforward mgitheorthogonality properties of simx cosnx:
the key results we need are, for any two non-negative insggandn,

s
/ cosmxsinnxdx = 0 (6.2)

-1t

T 0 ifm#n

/ cosmxcosnx dx = {n ifm=n#0
o 2m ifm=n=0

- 0 ifm#n
/ sinmxsinnx dx = { m ifm=n#0
- 0 ifm=n=0

All of the above are simple to prove using the trigonomettientities from Chapter 1, e.g. cAgosB =
%[cos(A+ B) + cogA—B)] and similar. Using these, we can find the Fourier coefficigivsn f (x): suppose
we multiply Eq. 6.1 by cosixfor somefixedintegerm, then integrate from-rrto 1, then we have

m m © o
/ f(x) cosmx dx= / l%ao cosmx+ ;ancosnxcosmx + ; bn sinnxcosmx] dx
-1 -1t

Assuming the sums converge, we can swap the integral sigtharelimmations above, giving

m

11 T © s ©
/ f (x) cosmx dx= 1ag V CoSmMX d% + > an U COSNX COSMX d% + > bn [/ sinnxcosmx d%
-n - n=1 - n=1 -n

(6.3)
Now supposen > 0, and look at the integrals in square-brackets above: thedire is zero. From Eq. 6.2,
the integrals in the middle term are all zero, except for dyame case when = mwhen the integral ist.
The integrals in the right-hand term are all zeros. Thersftre RHS of the above is simply one non-zero
term= a7, SO rearranging we get

1 m
am= —/ f (x) cosmxadx .
) —n

Likewise, if instead we multiplied Eq. 6.1 by sixand integrated, we get

n T © T 0 T
/ f(x) sinmx dx= %ao [/ sinmx d% + z an U cosnxsinmx d% + z by [/ sinnxsinmx d%
—TT —TT 1 -1 n—1 —TT

n=

Again all the square-brackets on the RHS are zero, exceptifercase in the rightmost bracket with= m
which givesrt, so the RHS idbymand we rearrange to

1 11
bm = —/ f(x) sinmxdx .
m/-n
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Finally, we need the special casernf= 0: going back to Eqg. 6.3 the LHS contains aos= cosX = 1;
now theag term on the RHS is the only one which gives a non-zero integedause both the infinite sums
haven > 1 # mand all the integrals are zero. Then the RHS above becémﬁﬁn}, so the above equation
for am is still correct form = 0; note that the funny-lookiné in the original definition Eq. 6.1 was putin to
make that work. (Some books may not have %hm Eg. 6.1, but then we need to add}an the equation
definingag instead). Remember siné= 0 so there is ndyg term to deal with.

The equations above were derived by choosing fixed integerm and showing that all terms with
n £ mdisappeared: however the argument is correct for any veiume so the above equations gia# the
coefficientsam, bm. (The choice of lettem above is arbitrary, but it had to be different to thevhich runs
from 0 to ). Finally, sincemis a dummy label in the above anchas now disappeared, we can change the
letterm back ton and we get

1 T
an E/_nf(x) cosnxdx (n>0) (6.4)

s
by = l/ f(x) sinnxdx (n>1)
mJ)-n
Therefore,to find the Fourier series S(x) for a given f(x), we simply have to evaluate the definite
integrals Eq. 6.4 (using a suitable method such as integraty parts) to gea,, b, for all n; then substitute
those coefficients back into Eq. 6.1.

Next we take an example of actually evaluating &heby, for a givenf (x).

Example 6.1. Find the Fourier series for

_J0 if —m<x<0
f(x)_{x if0 < X< T

Using the formulae above,
1 7 1 7
an = —/ f(x) cosnxdx = —/ xcosnxdx
mJ)-m TTJo
1/ . 1/m
bh = —/ f(x)sinnxdx = —/ xsinnxdx
mw)-m TJo

(the lower limits become 0 because we were gi¥éx) = 0 in [, 0], so that range contributes zero to the
integrals). Evaluating the above, using integration bygave find that:

~ 1 /[xsinnx]" /"sinnxdx _1{cosnxr
& =7 n Jo Jo n Sl on? o
1
= W(cosnn—l)
1
= (=)"-1)

m2

and this gives,, = —2/7m2 whennis odd, ora, = 0 for evenn > 0.

Note that forn = 0 the procedure above containg0so is ill-defined: as is common, we need to treat
n= 0 as a special case, with cos8 1:



Finally we need théy’s, which are

1 /[—xcosnx]™ /™ cosnx 1/ mcosnt  [sinnx]™
by = = (|22 +/ dx) == (- T el
T n o Jo n T n n |,
1 —(=1)"
= —(—mcosnm)+0= (=1
m n
(_1)n+l
- n

(and there is ndyg term, so this giveb, for all positiven).

Putting all thesey,, by, back into the general form Eq. 6.1, the Fourier series we sikedfor is

00 (_1)n+1

T[ (o]
=—— 5 CO 2k+1)x+
4 Z 2k 1)2 g ) n;

sinnx.

where we have dealt with the odd/evefor a, by replacingn with 2k + 1 which must be odd, and summing
overk=0toco.

Although this general method always works (as long as we caluate the integrals), we do not need to
do it for functions we can put into the required form by othexans, as in the next example.

Example 6.2. Find the Fourier series for stm.

Here we use the double angle formula: “sin= 3 (1 cosX)? = 711(1— 2c0S X+ coF2x) = %1(1—
2cosx+ 3 [1+ cos4<])
o) snﬁ‘x_ 3 — Tcosx+ §cos4.
This aIready looks like a special case of Eq. 6.1, so we judeay = ;3’1 (remembering the halfp, = —%,
= 8, and all othela, and allb, are zero.

(Note: We could evaluate the integrals and get the same answer,ébdbw't need to do that here since
we can see the result by inspection).

We note that the seri€Xx) is periodic, i.e. if we take the same series for angather than staying in the
range— 1< x < 11, §(x) will obey S(x+ 2m) = §(X). So this can also be used for functions defined on a range
longer than 2rif those functions are periodic with periodi2 Another way to look at this is that if we know
the function on the range-, 1] we can define it for alk by insisting that it be periodic; graphically, this is
equivalent to just “copying” the function infinitely manyrtes for intervals 2, like wallpaper.

We note that the range afcould equally well bga, o + 2] for any a, since all the quantities involved
are periodic so this will give integrals over exactly the sarange of values of. Notea = 0 is often used,
so the range af becomes0, 2.

Exercise 6.1. Find the Fourier series off(x) defined byf(x) =0 in —m< x < 0 andf(x) = cosxin

0<x<TL
The answer should be

o 4k
:_L ™ .
5 COSX+ ; a2 1) sin2kx .
O

Going back to example 6.1, and evaluating both sides-atrr/2: we need to remember that the cosine
of an odd multiple ofrt/2 is zero, the sine of an even multiple @f2 is zero, and the sine ¢2k+ 1)77/2 is
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(—1)%=1, from chapter 1. So we get

LS N Gl

2 4" L2k+1
LI S S
4 3 5 7 7

A number of results of this sort, giving sums of numericalegrcan be obtained by direct evaluation of
equation (6.1) at some particubarThe only tricky pointin using this is to guess whilo evaluate: usually
one of 1, 11/2 or 11/4 is what is needed, to make the sine and cosine functionssgivale results such as 0
or (—1)" etc.

Warning: so far, we have not actually proved that the infinite sBf®) on the right-hand side of 6.1
actually converges, or has limi(x). Strictly, what we have shown is that IF there exists an itdisumS(x)
which does converge tb(x) over—m < x < 1, then the coefficients must be given by Eq. 6.4.

We discuss the question of convergence and the limit in tkegeetion.

6.2 Completeness and convergence of Fourier series

We now give answers to two questions: can every function pétiod 2t be written this way, and does the
seriesS(x) in 6.1 with coefficients 6.4 always converge abat These ideas are referred to as completeness
and convergence. To specify more fully, consider the surh@fitstN terms withx fixed: this sum definitely
exists since all they, b, are bounded iff (x) is bounded, and we get a sum of a finMebounded terms).
Then letN — oo: if the limit exists, ther§(x) is said to converge at Completeness amounts to asking if this
limit S(x) equals the value of the original functidrix). The proof of the relevant properties is not part of
this course, but the result is. As usual, the conditionsametlike small print in contracts — ignorable most of
the time, but important when things go wrong.

Theorem 6.1 (Fourier's theorem or Dirichlet's theorem) If(k) is periodic with perio®rfor all X, and f(x)
is piecewise smooth i+, 1), then the Fourier series(8) with coefficients gand h, (defined as above)
converges tg (f (x+) + f(x—)) at every point.

Here “piecewise smooth” means sufficiently differentisdti@ll except isolated points, arfi@x+) means
the limit of f(x+ &) asd (positive) tends to zero, which is called the upper limitight limit of f(x) atx.
Similarly f(x—) is the limit of f (x— ) asd tends to zero, called the lower limit or left limit). At amywhere
f(x) is continuous, we havé(x+) = f(x—) = f(x), s0S(x) = 3[f(x) + f(x)] = f(x) so the Fourier series
does converge to exactlx). At points wheref (x) has a discontinuityf (x+) and f (x—) are not equal, and
thenS(x) = %(f(x+) + f(x—)) gives the average value dfx) on either side of the discontinuity: but this
may not be the value df(x) itself at the point.

Typically, we will find that ash — o, the coefficients, andb, tend to zero like 1n or faster.

Example 6.3. Taking the function and series of Example 6.1, Fourierstke tells us that at =
the series converges & f (1+) + f(11—)) = 3(0+ mm) = 3, usingf (1r+) = f((—m)+) by periodicity. The
series then gives
T 2

= Z+k;)n(2k+1)2 ’

NS
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since simrr= 0 and co§2k + 1)it= —1. Subtractingt/4 we have

m hd 2 2 1 1

i I ——— therefore
4 k;"(2k+1)2 n( Txte )

s S

8 P52 T

As a nice corollary of the above, we can get the infinite sunafiantegers (not just odd ones) as follows:

define 11
then dividing by 4 gives
1 1 1 1

T==+=+=+...
i zZtete”
S0 subtracting,
3 1 1
T=14++5+...
7 tptemt
which is the series above. Therefore
4
T = —_— = —
38 6

Note: There is a strange detail. Fourier’s theorem tells us whaphas in the limit of the infinite series.
But if we take any finite number of terms we obviously cannotaha discontinuity exactly, since the finite
series must give a continuous function. It turns out that famye sum overshoots the function on either
side of the discontinuity: this curious effect is called R8s phenomenon— adding more terms does not
reduce the overshoot, it just moves the overshoot closengaliscontinuity. (In the limit of the infinite
sum, the overshoot gets “infinitesimally close” to the drfruity, so for anyx a finite distance from the
discontinuity, this does not matter).

Example 6.4. The square wave.

Consider the “square wave” function defined by

_J0ifx<0
f()‘)_{1ifx>o (6:5)
in the domair—r, 1] and periodic with period &. This gives
1—cosnmm
=1 ano=0 by=—]_—
soby is O for evenn or 2/(nm) for oddn. Therefore,
sinnx
fx)=3+2 (6.6)
2 nGaa 7T

Figure 6.1 shows the square wave and its approximationsstiyoitirier series (up to = 1 andn = 5).
Several things are noticeable:

(i) even a square wave, which looks very unlike sines andnessican be approximated by them, to any
desired accuracy;

(i) although we only considered the domainr, 7] the Fourier series automatically extends the domain to
all realx by generating a periodic answer;
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Figure 6.1: Square wave (as in equation (6.5) but with thecaddirection stretched for better visibility) and
Fourier partial sums: two terms and four terms.

(iii) at discontinuities, the Fourier series gives the mealue of f (x) on either side of the discontinuity.

(iv) close to discontinuities the Fourier series overskoot

Another result telling us in what sense we have a good appratidon isParseval’'s theorem:

Theorem 6.2 (Parseval's Theorem) If (k) has a Fourier series defined as in Section 6.1, then

T 0
/ f()%dx=mag+ 1 (a2+Db).
-

n=1

For a formal proof one has to deal with convergence of theitefisum, but if we assume convergence
we can write

f(x)?% = <%ao+ Z an CoOSNX+ Z bnsinnx> (%aﬁ- Z am COSMX+ Z bmsinmx>
then we can expand this out into a double sum
1 0 [ee] . 0 0 .
f(x)?2 = Zag +3a <z amCoSmx+ z bmsmmx> +3ag <z an CosnX—+ z bnsmnx>
(Note: in the aboven andm can be any letters, but we have to use tlifferent letters since we're summing
over both of them independently).

anamcosnxcosmx+ anbmcosnxsinmx+ bram sinnxcosmx+ bybmsinnxsinmx)

IIM8

Now as before we integrate the above fram —rrto 71, and again we swap the sum and integral signs:
the first term is a constant giving integl(aj/4)a(2)27r, the next two terms contain only single sin’s and cos’s
which all integrate to zero. Then in the double sum, we lookagults from Eq.6.2 again, and all the terms
with m# nintegrate to zero: so we can turn the double summation initeggessummation withm = n (think
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of summing over an infinite chessboard where all off-diageqaares contain zeros). Then, therakxtosnx
terms also integrate to zero: finally the coscosnx terms and simxsinnx terms (withm = n) integrate to
1T, so the overall result is

/ f(x a0(2n)+0+0+z (a2m+0+0+b2m)

this is Parseval’s theorem as above.

In a very similar way, one can show that for two functiohls) and g(x), with f(x) having Fourier
coefficientsa,, by andg(x) having coefficients\,, By, we obtain

/ f(x dx_zrravo+rrZ (nAn+bnBr)

Example 6.5. Go back to the Fourier series for the square wave, Eq. 6.5eab®utting this into both
sides of Parseval's theorem, we have

T n 4 2 1
1 = — 4
/o x 2 TTZZ (2k+1)?
m o4 1 1
mo= 5 71(1+32+ +...)
On rearranging we get
m = 1 1

1
R -1
g - ki retete

which we had already derived in another way in Example 6.3.

Parseval’'s theorem is important in practical applicatidasexample telling us numerically “how good
is an approximation td (x) given by taking only a finite number of terms in the Fourieieg(as we have
to do in real-world evaluation on a computer). We proceedéevis: defineSy(x) to be the sum up to and
includingn = N of the Fourier series fof (x), thenS(x) is the infinite sum (the limit o6y (x) asN tends to
infinity). If we defineEn(x) = f(x) — Su(X), this is the “residual error” if we keep only the fiflstterms of
the series.

Itis easy to see that the Fourier seriesEqi(x) has coefficients zero ford n <N, anday, b, forn> N,
so applying Parseval's theoremHEg (x),

(o)

T
| EnPdx=m Y (a3+b)
n A
If we divide the above equation by the range 2he left-hand side becomes the mean valugpbver the
range, which is the “mean square error” in our approximagg(x). So, if the right-hand side is small, i.e.
the sum ofa + b2 is converging rapidly to its limit, we know th&(x) is a good approximation of our
original functionf (x).

6.3 Odd and even functions; Half range Fourier series

We recall the definitions of an “even” and “odd” function:
f(x) is evens f(x) = f(—x) forall x.
f(x) is odd< f(x) = —f(—x) for all x.
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Any function f(x) can always be written as
() = 31F00 + F (=] + 3[f (x) = F ()] ,

in which the first bracket on the right is an even function anel $econd bracket is an odd function, by
construction.

Since sirkx is odd and cokx is even, we might suspect that for even functidiis) only cosine terms
appear in the Fourier series (& = 0), while similarly for odd functions only sine terms appeaud all
a, = 0. This is correct, and we can easily check this, e.g.

m
Tan, = / f (x) cosnxdx
-7

0 m
/ f(x) cosnxdx+/ f (x) cosnxdx
- 0

0 m
/ f(—u) cog—nu) (—1)du+ /O £ (x) cosnxdx

=TT

where we have substituted= —x in the first half, so its range becomado 0. Now this is

T T
— [ f(-u) cosnu(—l)du+/ f (x) cosnxdx
0 0
T

/ (F(—x) + (x)) cosnxdx

0

where we have replacerby +x since it's a dummy variable. The above is clearly O() is an odd function.
Similarly

iy, = /On(f(x) — f(—x)) sinnxdx.

To summarise the above, i{x) is an even function, we have
2 i
an= 7_1/ f(x)cosnxdx, b,=0foralln
0

(where by symmetry we can halve the range of integration fdcmr, and multiply by 2 ). And iff (x) is an
odd function, alla, =0, and

2 T
by —/ (x) sinnxdx .
mJo

We can use this property to make a Fourier series floalirange usingonly sine or only cosine terms,
as follows. Suppose we are given a functig(x) defined on0, m] (a “half range”), then we can define two
new functions on the rande-, 11]: we construct an even functidi{x) such thatf (x) = ¢(x) in (0, 1) and
f(x) = p(—x) if —rm< x< 0. Likewise we define an odd functigiix) such thag(x) = ¢(x) for0 < x < ,
andg(x) = —¢@(—x) if —m<x<O0.

Note thatboth f(x) andg(x) are equal tap(x) on the rang€0, 1), but they have opposite signs on the
range(—11,0). (Note also thah(x) = %(f(x) +9g(x)) is equal top(x) on (0, 1) and zero or{—1t,0)).

Inserting thesd (x) andg(x) into Eq. 6.1, our even functioh(x) gives a Fourier series with
2 m
an = —/ @(x)cosnxdx , bh =0,
mJo
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and the odd functiog(x) gives a Fourier series with
2 (m .
an=0, bn:—/ @(x) sinnxdx .
mJo

These are called respectively thalf-range cosine serieandhalf-range sine seriesor ¢(x) ; both of those
series are equal tp(x) on the rang€0, 1), but they have opposite signs on the rafget, 0).

(Also it is clear that if you take the average of the above tenes, you get the series fb(x) above,
which is equal tap(x) on (0, i) and zero or{—11,0)).

Example 6.6. f(x) is such thaff (x) = f (x+2m) andf (x) = — f(—x), and on < x < 11, f(X) = X(1T—X).
Find its Fourier series, and prove that

TS i
CE Y

The givenf(x) has period Zr and is odd, so we know the series contains only sine terms, and
AN .
by = / X(711— X) sinnxdx
0

bls
2 n m
z —x(n—x)cosnx} +/ (n—2x)cosnxdx}
T n lo Jo n

{I
{ [(n— 2%) Si:;ﬂ :+ 2/07T Si;';'xdx}

2
T
4
bl
0 forn= 2k,
{ forn=2k+1.

Thus )
_ 8 2 sin(2k+1)x

RPN

(6.7)

To get the series requested, we try evaluating (6.7) at scsueh that sitk+ 1)x = (—1)K. This occurs
atx = m/2. Evaluating both sides there gives
™ 82 (-1
Hm2) =7 = I_TkZO (2k+ 1)3

which on rearranging gives the required result.

6.4 Arbitrary range Fourier series

Here we extend the Fourier series to the case when the rarme édnction is not-1 < x < 1. If we have
f(x) defined in arange-L < x <L, instead of-11 < x < 11, then we can define a new varialyle= x/L (a
rescaled version of), so that— <y < rmand writef as a Fourier series

f(x) = 38+ Y (ancosny+ bnsinny)
n=1
1 il N7IX . NTX
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where

1 Ly nmx , mx
an = 7_T/y:—n (n)cos—d(L)

1 I_f d
= E_/,L (x)cosT X.

and similarly
1/t . N7X
= E/_Lf(x)sdex.

Here we have just “rescaled”: observe thakampes from—L to L, the quantitynrx/L goes from sm to
+71m so there are again an integetwiggles” in each cos/sin term.

For functions which are a simple stretch/squash of anotirestion whose Fourier series we have already
worked out, we can rescale variables.

Example 6.7. Find the Fourier series for the functigiix) of period Z such that

_J0 if —c<x<O0
g(x)—{x if0<x<c.

Using the result of example 6.1, replacixgy y, we have

co 1)n+l
= — <
f(y) 4 Z 2k 172 5 Cog2k+ 1) y+Z sinny mT<y<m
TIX T 2 (2k+1)mx & (—1)'”rl _ NmX
—-) = — —c<x<
:>f(c) Z Tk 12 3 COS— +Z ——sin— c<x<c

But we havef (rx/c) =0 for —c < x< 0, ormix/cfor 0 < x < ¢, sof (rx/c) = (m/c)g(x) forall —c< x < c.
So we just multiply the series above by, and get

_c £ 2c (2k+1)mx &2 .
o) = Z_Z Rkt 12 % ¢ +Z m "¢

Appendix

This section will not be lectured and is not for examination

The following shows the kind of application Fourier himsletfd in mind and gives an example of some
methods in partial differential equations which we will maeanother context in the next chapter.

Example 6.8. In the propagation of heat in a solid in one dimension, thepenature® obeys the
equation
926 06
o2 oat’
This is the simplest case of tikffusion equation.

We introduce here a new idea which will run through the resthef course. This iseparation of
variables: we can see that if we look for a solution in the fol(x)T (t) we will find

d?x dr  kd®X 1dT
Ki3e *d " Xae Tda
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Here the left side depends only arand the right side only ot hence the two sides must both equal the
same constant (only a constant can depend only, @md only ort, at the same time). We then have two
equations

d2X

— =], A= d_T,

X dx2 Tdt
to solve, where\ is our unknown constant. When we have solved these, we ryultip answers together to
solve the original equation. In general we assume (and thdseally we can prove) that the full solution is
a (possibly infinite) sum of solutions of the separable type.

For Fourier’s problem we proceed as follows:
At the earth’s surface, the temperatdrés assumed to vary periodically over the year (for simpjicgo it
has a Fourier series in tintevith period 1 year. We defineto be the depth into the earth. Then at the surface
x = 0 we can write ont

2nmtt
—— +bnsin

-1
9—2ao+r;(ancos T T )

with T = 365/2 days.

Now at otheix we leta, andb, depend oix and put these into the differential equation: this meansree a
writing the whole solution as a sum of separable solutionshith thet dependence gives a Fourier series
(with different coefficients at eact). Plugging this into the original equation and equatingfiicients in the
Fourier series we get
d%a, _2nmt 2nm 2nmt

kﬁ cos T ?bncos?.
kdzbn gn2ht _ 2o . 2n7t
ox? T T ST
These can be written as a single complex equation
0% (b +i 2nmi .
(bn+ian) _ (bn+ian).

ox2 T

This equation is easy to solve as it is a linear equation wotlstant coefficients. [For those who have done
the Differential Equations course, the auxiliary equatias roots

T

and that gives the solutions. We need the solution with ativegeeal part (temperature variation decreases
as we go into the earth).] The solution is

bn+ian= cexp(—,/E—_Tl_T(lJri)x) ,

for some constart. This means we have a solution which varies sinusoidalli tuihe, but the amplitude
of variation decreases by a facteiin a distance,/kT/nm. Some realistic figures ade= 2.10~2 cné/s,

T = 36524.3600/2 secs, giving 1A = /kT/m= 177 cm for annual variation and roughly 19 of this for
daily variation. The amplitude of the annual variation leslin a distance such thatAx = In2, about 123
cm. So in 5 metres the variation of temperature reduces bygtarfa/16 (it also turns out that at that depth
the variation is out of phase with the surface, i.e. coolestid-summer).
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6.5 Fourier Transforms

This section is not examinable, but is included since it mayduseful for later courses.

To conclude this chapter, it is worth a quick look at the esten of Fourier series to Fourier Transforms.
The principle remains the same, i.e. expressing a genematitin as a sum of trigonometric functions of
different frequency.

There are two main steps to get from Fourier series to Fotraasforms: firstly, we introduce complex
numbers and use Euler’s formula

€™ = cosnx+ i sinnx

Then we change the definition of the Fourier series to

f(x) = % Ccne™

n=—oo

and the coefficients, become L
m .
- f —INX d
Cn 2n/_n (x)e X

What we have done here is just make the coefficieptsomplex, extended the infinite sum to negative
integersn, and changed the prefactor fronirito 1/(2m) to compensate for doubling the number of terms
in the sum. (The = O case does not have positive and negative terms so the Hadf iB.1 gets absorbed in
the above). In this case we can easily see, taking real arginany parts of the above, that = %(an —ibp)
where thean, b, are the same as previous sections; assuniixgy is real-valued, then it is clear from the
definition thatc_, = %(an +ibp) = ¢,, the complex conjugate.

This has not really done anything very new, it just turns teal formulae foran, b, into one complex
formula forc,. The real parts of the,’s are the cosine terms and the imaginary parts give the simnest if
we extract the two terms fern and—n in the series forf (x) we have

€™ 4-cne ™ = I(an—ibn)(cosnx+isinnx) + 3(an -+ ibn) (cosnx— i sinnx) (6.8)
= (apcosnx+ bpsinnx) | (6.9)

so the imaginary parts cancel, and this agrees with what wda#ore.

This also allows us to extend the formula to complex-valéied, in which case the terms, +c_, are
no longer real, and their imaginary parts give the complex gfaf (x) .

To extend to Fourier transforms, we generalise the abovedatbitrary-range series, i.e. 1&tx) be
periodic with period L, i.e.

f(X) — zcnefzninx/L
L/2 .
Ch = E/ f (x)e2"™/L dx
L /L2

Now if we write = 211/L andwy, = nd this becomes

f(x) = %cnéwx

o L/2

_ = j (WX
Ch = ZnLL/Zf(X)d dx
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and if we let the rangk tend to infinity, letd, = c¢,/9, let d tend to zero, we can convert the infinite discrete
series of coefficientd, into a continuous functior¥ (w), and (skipping some details) we arrive at

fx) = / F(w)e dw
1 /* i
= — f(x)e' . A
F(w) 271/_00 (x)e”"'* dx (6.10)
Here % (w) is called theFourier transform of f(x), with w called the (angular) frequency , which is the
continuous version of thewe had before.

Note: there are several possible “arbitrary choices” of whereuttipe 27's and minus signs in the above
definitions; some books put a factof\Y27t before both integrals, which makes them symmetrical. Other
authors leave ar2inside the exponential term, in which casds usually changed to a different letter e.g.
v = w/2m. As long as this is done consistently, it doesn’t mattertbate must be factors ofre’somewhere
in the definitions.
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