Chapter 7

Laplace’s Equation

Last update: 13 Dec 2010.

Syllabus section;

7. Laplace’s equation. Uniqueness under suitable boundanditions. Separation of variables. Two-
dimensional solutions in Cartesian and polar coordinatesisymmetric spherical harmonic solutions.

7.1 The Laplace and Poisson equations

Let ®(r) be a scalar field in three dimensions, as in previous chaftaace’s equation is simply
Pd=0 (7.1)

where, as we met in Chapter 3[6® = - (O®) = div(grad®); here[? is called theLaplacian operator,
or just the Laplacian.

Remember from before, b is a scalar field, its gradieft® is a vector field, and then taking div of that
gives us another scalar field: so Laplace’s equation is aseguation.

In Cartesiarx, y, z coordinates, things are simple: we recall the definitionsfiChapter 3,

e =t oyl T o7

and JF JF R
s fm o903

e TR T

PuttingF = 0@ above, sd; = d®/dx etc, Laplace’s equation in Cartesians is

0’0 9’0 9’

0% = = 7.2
ﬁx2+dy2+z922 0 (7:2)

Note that if we are using other coordinates (e.g. cylindpcdars or spherical polars) we must use results for
grad and div in those coordinates from Chapter 5, so it wikldifferent; we look at those later.

Laplace’s equation often occurs as follows: suppose we Aaeaservative vector field, so that- = (0P
for some scalar fiel@® as in Chapter 4.7; then if - F = 0 this gives Laplace’s equatidifd = 0.
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Aside: Laplace’s equation is the simplest and most basic exampdmefof the three types of second-
order linear partial differential equations (PDESs), kncasthe‘elliptic” type. Laplace’s equation is a linear
homogeneous equation.

A generalisation of Laplace’s equationReisson’s equationwhich is
2= f(r)

wheref (r) is a given scalar field. Laplace’s equation is clearly a sj@zse of Poisson’s whefér) = 0 at
all points in the volume of interest.

The basic examples of the other types of PDE arentee equation

wherec is constant (usually the speed of sound or light) tisdtime;
and theheat equationor diffusion equation

of 2
E—KDf

wheref is temperature in a solid, andis a constant. (We met the heat equation with a single spaitieble
in Example 6.8 on Fourier series ).

In maths, the wave equation is an example dhgperbolic’ PDE and and the heat equation is a
“parabolic” PDE. These names are potentially confusing since the sokitiave nothing to do with el-
lipses, parabolas, or hyperbolas, but this is just a “slaontfi because the powers and signs in the equations
look rather similar to the equations for ellipsoids, padaims and hyperboloids from Chapter 1.

Laplace’s and Poisson’s equations are very important, betlause of their occurrence in many physics
applications, and because they are the basic examplespifceRDEs. We are now going to spend the rest
of this chapter considering some solutions of Laplace’saéiqn in 2 dimensions.

We can see directly that there are some simple solutionsbka’s equation, e.g.

® = ¢ constant
= X

etc

8 6 6 6

These clearly are solutions, by direct evaluatiofld® from Eq. 7.2. There are in fact an infinite number of
general solutions to Laplace’s equation, which are knowmeasonic functions.
We easily see thdf? is a linear operator: that is
P(A®y + p®z) = A D201 + pPd,

for any two scalar fieldsp1, @, and any two constants, 4 (independent of position), since both grad and
div have this property. Hence @, and®, are both solutions of Laplace’s equation, sa {81 + p®,. Also,

if W is a solution of Poisson’s equation afdds a solution of Laplace’s equatioW,+ @ is also a solution of
Poisson’s equation, for the sarfif’).

Aside: Considering some gravitational and electromagnetic exesmf conservative fields, and using
the Divergence Theorem
/ O.-FaV = / F.ds
% s
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we see that ifJ- F = O everywhere there are no sources inside the volume, whichravity means that
there is no mass there, and for electric field means that tkare (net) charge. Hence, Laplace’s equation
describes the gravitational potential in regions of spabere there is no matter, and the electric potential in
regions where there are no charges.

If instead there is a net charge dengitythe electric fielde satisfies

1
D-E—g—op(l’)

whereg, is a constant of nature. (This is one of the four Maxwell'satipns). Combining this witk = —O®
gives
1
[P0 =——p(r).
&

That is an example of Poisson’s equation as we met aboveat&plequation is of course a special case of
Poisson’s equation, in which the function on the right-hside is zero throughout the volume of interest.

7.2 Unigqueness of Solutions to Poisson’s (and Laplace’s) Eation

Here, we will prove that under suitable boundary conditihressolution of Poisson’s (or Laplace’s) equation
isunique. We shall then investigate what the solutions actuallymemme simple cases, in each of Cartesian,
cylindrical and spherical polar coordinates.

As is common in differential equations, there are many galremiutions (in fact an infinite family), so to
find the solution in a specific case we need to be given dmuadary conditions. Recall for a 1-D ordinary
differential equation we often need a function value at onem® ends of a line; but here since Laplace’s
equation works in 3 dimensions, usually we need the valu®(@f to be given at all points on a closed
surface S, and we solve Laplace’s equation to finid the volumenside S. (Occasionally we solve over the
infinite volume outside S, with another boundary condition® at infinity).

Theorem 7.1 Suppose thafl?U = f(r) throughout some closed volume \r ¥ being some specified func-
tion of r, and that the value of U is specified at every point on the serfa bounding volume V. Then, if a
solution U(r) exists to this problem, it is unique.

E(ra?g:é proceeding, we need to recall Eqg. 3.6, which was
0-(UF)=UO-F+(OU)-F
Choosing- = U in the above, we get the identity
0-(UOU)=UD0% + (OU) - (OV) (%)
which we use below.

Now to prove the uniqueness theorem, supposelthaindU, are two scalar fields whichothsolve the
given problem. Defin®/ = U, — U5 to be the difference of our two solutions.

Then, we know thaflW = 0 inside volume V (by linearity), and W = 0 at all points on thefacesS,
since bothJ; andU, match the given boundary condition.
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Now we consider the volume integral
/|DW|2dV - /(DW).(DW)dV
v v
- / 0. (WOW) —WO?W dv  using(+) above
\%
= /D-(WDW) dv -0 since(12W = 0 everywhere iV
v

= /(WDW) -ds (by the Divergence Theorem
S
=0 becaus®/ =0o0nS

Now, the integrand on the LHS is a squared quantity, theedfoalways non-negative, and its integral is zero.
This can only happen if\W = 0 throughouty (otherwise, if0W was non-zero anywhere W, the whole
integral on the LHS will be positive because there cannotriyenggative bits in the integrand to cancel the
positive part, i.e. a contradiction).

Now OOW = 0 throughoutv meansW is a constant througho. ButW = 0 on the boundary of V,
thereforeW = 0 throughou¥. HencelJ; = U, throughout V, so the solution imique. Q.E.D.

Note that we have actually proved uniqueness for Poissapiateon, and Laplace’s is a special case of
that.

[ Aside: It is fairly clear that the final step in the displayed caltigda above also works if, instead of
W = 0 on the boundary,\W - n = 0 wheren is the normal to the surfac® This corresponds to being given
a boundary condition folU - n on the boundary, instead of the valuelbftself. Moreover, it still works if
at each point on the boundary eitigror OU - n is specified. The case wheleis given on the boundary
is called ‘Dirichlet boundary conditiorls and the case wheri@U - n is given is called Neumann boundary
condition$. If we only have Neumann conditions, oW above is still a constant but not necessarily zero, so
the solutionU is unique up to addition of any arbitrary constant. We willyodeal with Dirichlet boundary
conditions from here on, but you may meet the Neumann camditin later courses. ]

The virtue of this uniqueness theorem is that it gives usambie to make whatever assumptions or guesses
we like, provided we can justify them afterwards by showirgihbLaplace’s equation and the boundary
conditions are satisfied: if they are, the solution we founubine the right one, even if our method involved
some educated guesses.

Having proved uniqueness, we now demonstrate how to agtiadl solutions of Laplace’s equation in
some simple situations. In genef(r) can depend on all three coordinates, but we will confine dvesdo
cases depending on two of the three coordinates: we willyduel three most common coordinate systems
as before:

¢ In Cartesian coordinates, we will takgx, y), so® does not depend an

¢ In cylindrical polar coordinates, we will také(p, ¢) soU does not depend anagain, and we relabel
@ to U to avoid confusion with the angle.

¢ In spherical polar coordinates, we will takKr, 8), soU does not depend apand we have rotational
symmetry around theaxis.

The first two of these cases provide us with a nice geomeifritaipretation. Forb(x,y) orU(p, @), we
can forget about the— coordinate: then things reduce to a two dimensional probéerd we have boundary
conditions given on the edge(s) of a region, (say a rectaorgigcle) and we have to solve fd@r orU inside
the given region. Now imagin@ as a varying height. Solving Laplace’s equation in 2D subject to boundary
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conditions is like taking a rubber sheet with its edges stock rigid frame at the boundary with a “warp”
in the third dimension: the frame fixes the height at the bauypdvhile the rubber tries to minimize its total
area, which is equivalent to solving Laplace’s equation.

For spherical polard (r, 8) though, the 2-D interpretation no longer applies becausesphere still lives
in 3-D.

Note: A “physical” example in three dimensions is as follows: sop@we take a uniform solid object
(of arbitrary shape), and attach a large number of tiny tlstat-controlled heater/coolers to the surface, and
set all the thermostats to some smoothly-varying functiothe surface. The temperature insidi¢r ), will

obey the heat equation

oT 2
e kO“T
with k a constant and boundary conditions set by our thermostatse Wwait a long enough time so the
temperature distribution inside converges to a steadyg,sthe LHS above will then be zero, so then the
temperature inside the solid will solve Laplace’s equatiwith the given surface settings as the boundary
condition. (If our boundary condition i =constant independent of position, we just get the obviouisgo
solutionT = constant inside; but if the boundary settings vary arouedstirface, it becomes an interesting

problem.)

The choice of coordinates will be adapted to the geometrip@fdiomain of interest and its boundaries,
which usually makes calculations easier. For rectanguwanbaries we use Cartesians, for circles or cylin-
ders we use cylindrical polars, and for spherical boundasie use spherical polars. For example, one may
need to calculate the electrostatic potential outside egelobsphere. This would be very messy in Cartesian
coordinates, and is much simpler if we use spherical polardinates instead. (This was one of the main
reasons for studying Chapter5)

7.3 2-D solutions of Laplace’s equation in Cartesian coordiates

We first develop a general method for finding solutidns: ®(x,y) to Laplace’s equation inside a rectangular

domain, with given boundary conditions féron all four edges of the rectangle. In Cartesian coordinates

we saw above, Laplace’s equation is

9’0 9%°d 9’0
=0 . 7.3

ax2 + ay? + 022 (7:3)

and in two dimensions we just drop the last term.

(P =0 (00) =

We will now try looking for a solution of the form

B(x,y) = X(X)Y(y)-

whereX(x) is some function ok only, andY(y) is some function ofy only. Such a solution is called a
separable solution We cannot justify this in advance, but if it works then thégqueness theorem tells us we
are OK. Itis possible to prove that any solution can be wrigte a sum (possibly an infinite sum) of separable
solutions, but this is beyond the scope of this course.

Substituting the abov@ into (7.3) gives

d?X d?y
v Y +X Y 0.
Dividing this by XY gives
1d?X  1d%Y

X2 Ydy?



Now, the left-hand side is a function gfonly, and the right-hand side is a functionybnly. This can only
be satisfied if both sides are the same unknown constant.

Note: to prove the constanX(x) andY(y) must satisfy the above at amyy inside our rectangle: so
consider the above equation along a lirg y) with fixedx = xg and varyingy. The LHS is fixed, so the RHS
must therefore be independentyofi.e. constant. The same argument wijghfixed andx varying shows the
LHS is constant, and it must be the same constant.

Now we call that constantA with the minus sign for convenience, and both sides abovalegh. Thus
we have ) 5
d-X dy
— +AX=0 and — —
dx? * dy?
If A #£ 0, these equations are the differential equations for tragwetric and hyperbolic functions, which we
met in chapter 1, so we know their general solutions as falow

AY =0.

If A is positive, definé = /A and the solution is
X = Acoskx+ Bsinkx, Y = Ccoshky+ Dsinhky,
whereA, B,C, D are any constants. Multiplying these together,

® = (Acoskx+ Bsinkx) (Ccoshky+ Dsinhky) . (7.4)

If A is negative, defink = v/—A and then the solution is
X = Acoshkx+ Bsinhkx, Y = Ccosky+ Dsinky.
whereA, B,C, D are different constants. Then
® = (Acostkx+ Bsinhkx) (Ccosky+ Dsinky) . (7.5)
Note: in each of these solutions there is usually one more conitantwe really need. For example if
in (7.4) AC # 0 we can write
® = AC(coskx+ B/Asinkx) (costky+ D/Csinhky)

using just three constan&C, B/A andD/C: this means that in examples, one of the four constants can
usually be set to 1. One way to do this is to write (7.4) as

® = Lsin(kx+ M) sinh(ky+ N)

for some constants, M, andN. Usually this works fine, except it does not cover the casaabe-= 0.

Finally, we need to deal separately with the case O:
that easily gives us solutioné= Agx+ Bg andY = Cypy+ Dg so

@ = (AoX+ Bo)(Coy+ Do) ,
with more constantfy, By, Co andDy. It is usually convenient to multiply this out and re-writes
® = a + Bx+ yy+ Oxy (7.6)

with a, B, y, & as alternative constants.

Remember, from linearitygny sumof any of the above functions with alkyand any constants is also a
solution of Laplace’s equation. So, if we are given a boupdandition, solving Laplace’s equation basically
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reduces to choosing‘@ick-and-mix” of any sum of the general solutions in order to satisfy allghen
boundary conditions: if we manage to do that, then we haweeddhe problem (and our solution is unique).
If we are lucky, a particular one of the separable solutioitisde this, as we see in the next example.

Example 7.1. Find the solution of
Po="—"+-——=0 (%)

inside the rectanglB: 0 < x < a, 0<y < b, given boundary condition® = 0 on the three sides=0,y=0
andx = a; and® = sin(prix/a) ony = b, for some integep.

We note here thab is zero along three of the sides, and non-zero along the ‘s@® withy = b. Also
since sin0= 0 and siriprra/a) = 0, ® is zero at the pointg0, b) and(a,b) so the given boundary condition
is continuous at the corners.

Can we satisfy the boundary conditions in this case with dnh@ separable solutions above ? We
consider them one by one. Clearly (7.6) will not work sincdaesn’t contain a sin. The form (7.4) is more
promising, since if we take that equation and choose

i
T a

in there, the first bracket becomes 1(girnx/a) which is the function we want on the boundary- b. Now
we just need to choo$® D to make the second bracket in 7.4 equal zero on theysie®, and 1 on the side
y = b; this gives us two simultaneous equations@oD :

Ccosh0+Dsinh0=0
Ccoshnmb/a) + Dsinh(nmib/a) = 1,
and the first of these impligS = 0, then the second giv&= 1/sinh(nrb/a).

A=0 B=1 k

Finally putting the abové, B,C, D back into 7.4 gives us

— sinP™ i PY ) sing P
®(x,y) =sin a sinh a /sinh a

this satisfies all the boundary conditions and Laplace's&qn, so it is the unique solution.

In the above Example, we chose a “sin” in the boundary camditd make it easy: but for more general
boundary conditions, using just one separable solutiohnail work.

However, since Laplace’s equation is linear, we can addiegeeparable solutions to get a more general
solution. In many cases, including the Cartesian one, ib&sible to prove that every solution can be written
as a sum of separable solutions (this is called completerigise separable solutions).

In the Cartesian case we would need to introduce differdoegafA for eachk etc., which we typically
would denoteAx. Sincek can take any value, the “sum” of separable solutions can meigd become an
integral overk; but for the rectangular boundaries in the example above ifenly need to take integer
values ofp, call it n, so the general solution of Laplace’s equation inside thtargyle becomes

D(xy) = a+PxX+yy+oxy (7.7)
+ Z (Ancosnmx/a+ Bpsinnmx/a) (Cycosnrty/a+ Dpsinhnry/a)
n=1

+ Z (ancosrx/b + by sinhnmx/b) (¢, cosnmty/b + d, sinnmy/b)
n=1

1This leads to the use of Fourier transforms, which is the stegi, beyond this course, in Fourier methods
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We note that the sinrix/a terms vanish at = 0 andx = a so they will fit Dirichlet boundary conditions
which are zero on those boundaries. If multiplied by a simpthey also vanish o= 0 so are non-zero only
ony = b: to get similar forms which are zero gt= b and non-zero a = 0 we need to take a combination
of sinhnrty and cosimrty which is zero aty = b: using the addition formula, this will turn out to look like
sinhnm(b—y)/a.

( The cosmx/a terms are not zero on the boundary, but have vanishing deeva.[0® = 9d®/dx at
x = 0 andx = a, so they will fit Neumann boundary conditions which are zerdhwse boundaries. Since we
will stick to Dirichlet problems as examples in this counae, will find we are using only the sine terms not
cos terms in our solutions).

For the other two sides at= 0 andx = a, we just repeat the above interchangig> y anda < b: so
a solution which is non-zero only on siate= a will look like sinnmy/bsinhnrix/b, and a solution which is
non-zero only on the side= 0 will look like sinnmty/bsinhnri(a— x)/b.

From these remarks, we can see that in order to fit generaldasyrconditions, we can solve it if we
break our function on the boundary into a (possibly infingein of sin/cos functionsi.e. a Fourier series.

Now we look at a boundary condition with a general functiorooe side:

Example 7.2. Consider the previous example but with= g(x) on sidey = b for some giverg(x), and
@ = 0 on the other three sides of the rectangle.

We try a linear combination of solutions of the form found ebddkeeping the conditions derived from
the other parts of the boundary):

2 . N7y . Nmx
®(x,y) = Y Dpsinh—=sin—.
nzl a a

Each term on the RHS is automatically a solution of Laplaeqisation and is zero on the other three sides,
so we just need to choose a set of constBits to make this match the giveg{x) along the sidg = b.

Putting iny = b above gives us
hd nrm . nmx
0] =Y Dpsinh—— sin— = .
(x,b) 2 nSinh——sin— 9(x)

n=1

here theD, and the sinh don’t depend orso we can rewrite this as
l N7IX
d(x,b) =Y Ensin— =
(4b) = 3 Ensin—2 9 (+)
with E, = Dy sinh(nmib/a).

Finding the coefficient&n in equation(x) is a standard problem in (arbitrary range) Fourier seriemfr
the previous Chapter. The answer is

2 (@ . N
En:a/o g(x)sm? dx.

Now we just need to evaluate this integral for alland then plug irD, = E,/sinh(nmib/a) back to the
original equation to give us a solution

hd En . NMy . NmX
OXY) = Y —————sinh—2 sin—-.
() nzlslnr(nnb/a) Sinh—=-sin=3

By uniqueness, we have fouttte solution.

101



We still have a couple more issues to deal with. So far, we Is@em how to solve the problem as a
Fourier series when the boundary conditions are zero or thices and non-zero on any one side.

If the boundary conditions are non-zero on all four sidesstilitzero at all four corners, we can solve
this just by breaking it into four separate problems, eacwlith has non-zero boundary values on exactly
one side: this gives four solutiods , ®,, ®3, ©4 each solving one different side: then add the four solutions
by linearity of Laplace’s equation.

If the four corners are all one constant value, just subtifsistconstant from the boundary conditions,
solve as above, and add the constant back to the final salution

Finally, we have to deal with the case where the given boyncamditions are different (but still contin-
uous) at the four corners. This can be dealt with by Eq. 7.&abgiven the four values at the corners, it is
straightforward to choose our four constaat$3, y, o to give a solution (call itbg) which matches the given
boundary values at all four corners, by starting with (Bgd) corner, then th€0,a), etc. Next, we subtract
thatdy(x,y) from all the given boundary conditions on the edges to get a new setufdary conditions for
@) + O, + D3+ Dy; solved; to P, by treating the four sides separately as above: and finatlyadidive
solutions®g + ... 4+ @4 to get the answer.

This whole process is quite lengthy, but we have seen how toid@rinciple.

Example 7.3. Consider a rectangle with€ x < 2, 0< y < 1, and boundary values fd¥(x,0) = sinrx
etc. as shown at the left diagram in Figure 7.1.

T 0

sin 7y 2y sin Ty 0

sin rx sinmx

Figure 7.1: Left: boundary conditions @b(x,y). Right: boundary conditions after subtracting & = xy
along the edges.

First we look at the boundary values at the four corners:irgpthese off the diagram we hade= 0 at
three corners an®(2,1) = 2 at the cornefx=2,y = 1).
So, now we solve for the coefficients ®y(x,y) = o + BXx+ yy+ dxy so as to fit the given boundary values
only at the four corners: starting at the origin and working is easiest, so
$y(0,0) =0= o =0,
$p(2,0)=0= =0,
®p(0,1) =0=y=0,
Pp(2,1)=2=06=1,;
therefore

Pp(x,y) =0+0+0+1xy =xy

Now we evaluateby along all four edges: it is zero on the left and bottom eddefs, ®y(2,y) = 2y on
the right edge andy(x,1) = x along the top edge. Subtracting those from the original damnconditions
leaves the new boundary conditions in the right panel of fE&gul: by construction, these are zero at all
corners. We can now mateb(x, 0) along the bottom side using

(1 —y))sinmx

sinh(7t)

ch(Xa y) = Sinr(
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(this is like example 7.1), and matdh(0,y) along the left-hand side with

_ sinh(1(2 — x)) sinrty

®2(%) sinh(2m)

The full solution is
D(X,y) =P+ P14 P, .

Exercise 7.1. Find ®(x,y) in 0 < x < 11, 0 < y < 1, satisfying the following conditions:
?0 =0 in0<x<m 0<y<1,

@® =sinxony=0

and® = 0 on the other three sides of the rectangle. Is the solutidguer? a

7.4  2-D solutions of Laplace’s equation in cylindrical pola coordi-
nates

We now look at cylindrical polar coordinates: this is theurat choice where the boundary conditions are
given on a circle in 2D or a cylinder in 3D. It will turn out a dtmpler than Cartesians, since there are no
corners to worry about on the boundary.

We also change our label for our scalar field frdmo U, to avoid confusion with the angte (of course,
this is just a re-labelling and makes no real difference).

From chapter 5, in cylindrical polar coordinatgs ¢, z), the grad of a scalar field is

T op P pagp”? 97
and the divergence & = Fye, + Fyey + Fo€; is
D.le M+@+M .
P op 0] 0z

Putting these together we obtain

1[0 ou d (10U 0 ou
2 = i —_ | — - R R - -
oy = dv(DU) P Lﬁ) <p0p>+0<p (p dfp>+0z (p 02” ’
which simplifies to
DZU —Ei d_U _|_i62_u+@
~ padp pdp p2o¢? 072

Consider the case when everything in the problem is indegreiaf z, soU = U (p, ¢). Once again we
seek aseparablesolution, this time we will write it as

U(p,9) =R(p)N¢) -
whereR andSare functions to be found. Putting this iff8U, working out and dividing byRSgives

pd ( drR)_-1d'S
Rdp S dg?

P (*)
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Once again, the LHS is a function of ongyand the RHS is a function of onlg, so by the same argument as
before, both sides are some (unknown) constant, call it

Setting the RHS above t, the differential equation fo(¢) is then

d?s

_— )\ =

902 +AS=0,
which we met before: ifA > 0, it has the general solution

S(¢) = Acog VA @) + Bsin(vVA @) .

If A < 0 we would similarly have

S(g) = Acost{v/—A @) + Bsinh(v/ =2 @) .

But, in polar coordinate§(¢p) must be periodic, i.e. the solution must be the same if we aditb 2, since
any pair of valueggy and ¢y + 21T represent the same point in space; the sinh and cosh sduwtitimA < 0
cannot obey this, so are “forbidden” and we discard them. Siin@nd cos solutions will obey this periodic
condition iff v/A is aninteger. Thus, the only allowed values afareA = n? wheremis a positive integer
(without loss of generality) and we can write the solutiondgarticular integem as

S(¢p) = Amcosm@+ Bysinmg .

Now, going back tdR(p) and setting the LHS of (*) equal th = n? gives

d drR
o5 (oG ) ="7R

We guess a power-law solutidth= Cp? for constant<, g; substituting and working through, that simplifies
to 2o
sog = +m. This is two independent solutions fgrand each has its own constant, so we write
R(p) =Cmp™+Dmp ™",
and agairCn, Dy are constants; finally multiplying o@andR, we have a solution fdd of the form
U(p, ) = (Amcosme+ Bysinmg) (Crnp™+ Dmp™™) .

for any integem > 0.

The casel =0 is again a special case: then we integrate twice giRirgCo In p + Do, andS= Agp+ Bo.
In most cases we séf = 0 by requiring uniqueness on adding B ¢; ( but note there are special cases
where it is acceptable fad not to be unique, providedU is unique. This happens in fluid dynamics, for
example, where we are interested in the fluid veloeity OU rather than the potentiél itself. In that case
we require thatJU be single valued, which allows us to usefyterm).

Combining the above, the general solution of Laplace’s #guan cylindrical polars is a linear combi-

nation of all these above for the= 0 case and every positive > 1: each of thesen has its own constants,
so we get

U(p,9) = (Ao@+Bo)(Colnp +Do) + 5 (AmcosM@ + Bmsinmg) (Cmp™+Dmp™ ™). (7.8)
m=1

Note that this form implies that boundary conditions K&, ¢) given on a circle or cylinder of fixeg = R
leads to a Fourier series problemgrn(once the terms iy have been found). However, in many cases we
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need only a finite number of terms and can use intelligentgek (essentially, including only terms with
thesamevalues ofm which appear in the boundary conditions) to find the requaestcbf constants.

Also, note the presence of both positive and negative posfgr®dn the RHS: if we are solving a problem
inside a circle with boundary condition given on the circle, we wifuire allD, to be zero fom > 1 so that
the solution is bounded at the origin= 0. Alternatively, we can be given boundary conditions onralei
and asked for a solutiooutsidethe circle, requiring the solution to be well-behaved agégy — : then we
must set alCy, to zero form > 1, and use onl,, terms.

Finally, we may be asked to solve Laplace’s equation immmulus between two circles of given radii,
with boundary conditions given on both the inner and outesies; in that case we will need to keep both
Cm andDp, terms, and we'll get a pair of simultaneous equations fohead¢o match the given boundary
conditions on both circles.

Example 7.4. Solve Laplace’s equatidii?U (p, @) = 0 outside the unit circle, with boundary conditions
U (1, @) = 2sir? @ on the unit circle, antl ~ Inp at largep.

First look at the general solution 7.8. That does not cordasir?, but since 2sifigp = 1 — cosp, the
latter form does look like a sum of two terms in 7.8: a cons{@amt= 0) term plus a cos@ term which
looks like anm = 2 term; so we can (correctly) guess that the same is true afdhgion, i.e. we choose all
An...Dnm coefficients withm= 1 andm > 3 to be zero, so the infinite sum becomes just one termnvith2.
We also seB;, = 0 since our boundary condition only contains a cp$dt a sin 2p.

The largep condition impliesAg = 0, and als, = 0 since we don’t want a*2 term at largep.

Writing out 7.8 without all those zeros leaves us with ourtfegted guess” solution as
U = BoDo -+ BoCoIn p + AoD, cog2¢) p 2 .
Again this has several “redundant” constants, and we camgusite it as
U=a+pBInp+ycog2¢)p 2

Finally, matching the given boundary values on the cigle 1 gives usa = 1,y = —1, and the largep
condition gives ug = 1, so the unique solution is

Ccos
U(p,fp):1+lnp——22p-

We can check this easily: it is a particular case of 7.8 soéisdBwlve Laplace’s equation. And it matches the
given boundary conditions gm= 1 and largep; so it is the unique solution.

Exercise 7.2. Consider the regio® defined bya < p <b, 0< ¢ < 11, —0 < Z < 0. Sketch the region in
a plane perpendicular to tlzeaxis which lies inD. On the boundaries = a, ¢ = 0 andg = 11, U = 0 while
on the boundarp = b, U = gsing. Find the solutiotJ of Laplace’s equation iD, independent of, which
satisfies these boundary conditions.

[You may assume thatonQ @ < 1T

5 SN

qosinq)— i L
& TI(4k2 - 1)

a

Note: Finally, it is also worth noting that solutions likg' cogng) can also be expanded as polynomials
in x,y: for example, cogg) = 8cos ¢ —8cog ¢+ 1, andp* = (x> 4 y?)?, therefore a bit of arithmetic leads
to p?cos4p = x* — 6x2y? +y*, and you can use the Cartesian formula to check@Raif that is zero. These
may occasionally be useful, but they rapidly get unmanagdablargen.
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7.5 Axisymmetric solutions of Laplace’s equation in sphegal polar
coordinates

Now we consider what to do in problems with a naturally sptergeometry. First, we need to work out
what02U is in spherical polar coordinates.

As before, we have

0?U = div(0U).
which is true in any coordinate system. Now in spherical poteordinates,
ou 10U 1 ou
LU =—e+ €+ -——

T T T 50 T rsing 99

and the divergence ¢f = F e + Fgeg + Fyey is

c_ 1 [d(r*sin6F) N d(rsinBFy) N d(rFg)
~ r2sin@ or 20 20 |’

Putting these together we obtain

-t [9(26ne%Y) L 2 (sing®Y) . 9 (L Y
SV =zgng |ar SN0 )+ 38 (5958 ) T30 \sina ag ) |

which simplifies to
9 (209N L 9 (gng9YY 1 i
or or sin@ 90 00 ) st 0¢? |’

Many problems araxisymmetric- that is, there is no dependence on {heoordinate. In such cases
U =U(r,0) andd(anything/d¢@ = 0. As in the previous cases, we proceed by seeksgparablesolution:

U(r,08)=R(r)S(0).

[different meanings from thR andSin the last section]. ThuS2U = 0 becomes
1[0 [/ ,0R 1 0 (. . 0S
2 {W <r W) S+ Sn6 30 <sm6%) R} =0

ii rzﬁ_R —7_1 i Sined_s
Rryar \' ar )~ 6)sin6 96 90 )"

Once again, the left-hand side is a functiom @inly, and the right-hand side is a function®bnly. But they
are equal, and so they must both be some constani .séius

1
r2

U =

which rearranges to

d (,dR B
a(lr a)—/\R_o (7.9)
and 1 d ds

We consider equation (7.10) first. If we defiwe= cosf, then

d_ -1d

dw  sin6de’
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so equation (7.10) can be written in the form

d ds
an ((1—mﬂ)m> +AS=0.

which is called_egendre’s differential equation. We see in the next Section that obkygendre polynomial
solutionsS= P,(w) = P,(cosP) are allowed, i.e. the cases whéere= ¢(¢+ 1) and/ is an integer, ané is
the Legendre polynomial of ordér

Going back to equation (7.9), inserting= ¢(¢ + 1) thenR(r) satisfies

d [ ,dR B
< (r E) — (0 +1)R=0. (7.11)

We try looking for a power-law solutiorR = ArP of this with A, p constant: inserting it we find
p(p+1)ArP = ¢(¢+ 1)ArP

i.e.p(p+1) =/¢(£+1). Givent, this is a quadratic equation fx It has solutionp = ¢ andp = —(¢+1).

Hence the general solution f&r) is

B
_ l
R=Ar +m.

and so the solution fdd is B
¢
uro)= <Ar + m) P;(cosB).
Becausél? is a linear operator, any linear combination of solutional& a solution of Laplace’s equation ,
S0 again the general solution is an infinite sum:

0

Vo= 5 (Anrn+ r§:l> P (cosf). (7.12)

The individual functions on the right aexisymmetric spherical harmonicsand they form a set of axisym-
metric solutions of Laplace’s equation which is complete, {7.12) can be shown to be the most general
axisymmetric solution.

One can match arbitrary boundary conditions to an infiniteeseof Legendre polynomials using their
orthogonality properties (see later). However, in thisrsewe will stick to problems where only a few terms
are needed and we can see what they are by intelligent gudssiive essential rule isnly to put into the
prospective answer those Legendre polynomials which appélae boundary conditions.

Example 7.5. A perfectly spherical conductor, centre 0, radass placed in an otherwise uniform elec-
tric field Eq. (Mathematically, the condition for a conductor is that #iectrostatic potentid) is constant.)
What is the potential everywhere outside the conductor?iAside?

Outside the conductor (> a), we want to solvél?U = 0. The boundary conditions are théat=constant
onr = a and that far from the conductéiU — E.

The unperturbed field (the one before the conductor was gdsied= Egk, choosing the z-axis to align
with the field. Converting this to theis of spherical polars, we have

Eo = Egpcosfe — EgsinfB ey
which is what the field must look like as— : this has potential

Uo = Egr cosf + constant= EgrP;(cos) 4+ constant
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(Note that thids a solution of Laplace’s equation.) Now our potential

U= nZD (AnrnJr rnle) Pa(cosB) — n;Anr”Pn(cose)

asr — oo, But this must equallp = EqrP;(cos6)+const. at large, so we can deduce thAj = Eg, Ag is an
arbitrary constant, ané,, = O for all othern.

Onr =awe wantU to be constant, i.e. it should not vary wiéh Now onr = a

Bo B1 o Bn
U(a,B8)=~A0+ = + <E0a+ ?) Py (cosB) + nZZWPn(COSQ)

The potential om = a will vary with 8 unless all the coefficients &h(cos@) (n > 0) each vanish. Hence we
must haveB; = —Epa® to make the bracket vanish, aBd = 0 (n > 2). Hence finally the solution is

B 3
U(r,e):Ao+TO+Eo (r—?—2> cosb.

Note thatAg andBg are undetermined constants. To deternBp&ve need additional information to ascertain
the potential difference between the surface of the comdwetd a point at infinity. The constaAp will
always be arbitrary, because the absolute value of the paltéas no physical meaning (only its gradient is
actually observable).

Inside, sincdJ is constant on the boundary, it must be constant inside thewaior.

This last point has practical consequences. The voltageadnes[in a static field] satisfies Laplace’s
equation. If you stand under an electricity pylon, thereriather large voltage change—thousands of volts—
between your head and your feet. But if you stand inside a vage (often called a Faraday cage), then
the wire acts like a continuous conductor and equalizes ditage over the cage and hence inside the cage
too. That is why a wire cage provides a refuge from lightni@gges also provide screening from electronic
surveillance, or, by putting equipment inside them, safletyhe people outside.

Exercise 7.3. Show that at a general point the following are solutions gflaae’s equation?U = 0.

1. U =r"cosnB, for an integen, in cylindrical polar coordinates.

2. U =rsinfcosg, in spherical polar coordinates.

7.6 Introduction to Legendre polynomials

We now take a brief look at the Legendre polynomials. Thesedafined as the solutions bégendre’s
differential equation which is
d ((1—x2)ﬁ) +Af=0.

dx dx

or similar, whereA is an arbitrary constant. The solution of this is outside shepe of this course, but
essentially we search for power-law solutions of the form

fx) = apxP
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Then, it can be shown that the series only converges abbeth 1 if A = /(¢ + 1) where/ is an integer, and
we can take as a non-negative integer without loss of generality.

Then, the functiorf (x) which satisfies the above D.E. fdr= £(¢+ 1) is called the_egendre polynomial
of “degree”?, usually writtenP,(x). (It is common to use lettef for this integer, since when things are
extended to 3-Bpherical harmonics lettersn andm are generally used for other functions in thand ¢
coordinates.)

There is an arbitrary multiplicative constant in e&ghwhich is chosen so th&(1) = 1 for all £. It turns
out thatP, is an/-th order polynomial, and involves only even/odd powersvdff ¢ is even/odd.

The solutions can be obtained Bypdrigues’ formula

1 df
P/(X) = ——
1) = 271 4
There is also a recurrence relation between them,

[0 —1)"] (7.13)

Pia(X) 20+ 1) XPy(x) — £Py_1(X)]

“ il
which gives all of them, working upwards froRy andP;.

Starting from Rodrigues’s formula

Px) = 1
Pi(x) = x
then the recurrence relation gives subsequent ones as
R = 3(E32-1)
P = 35839
Pi(x) = %(35x4—30x2+3)
etc

Another important property isrthogonality, i.e. the fact that
1
/ Pn(W)Py(W)ydw = 0 ifm#n
-1

= 2 if m=n
T 2n+1 a

This property enables us to express any general function atfiaite series of Legendre polynomials, by a
device similar to that for calculating Fourier coefficients

In this course we will only look at simple functions, in whichse a general n-th order polynomial can be
rearranged into a sum of the first_egendre polynomials, e.g. suppose we are given a boundaditon
in Laplace’s equation looking liké(w) = w? +w+ 1, (W= cosf) we need to choose a sum of Legendre
polynomials to match this. We neg@/3)P,(w) to match the quadratia® term. Then we needPL(w) to
match the linear term. Finally for the constant, {2¢3)P, has given us a-1/3 constant term, so to match
the 1 we need-(4/3)R, on the right hand side. So in that example,

WH+wWH1= %Pz(w) + 1Py(W) + gPo(w)

and we can now put the right-hand-side into the generalisoldb Laplace’s equation, 7.12 , and choose
suitable constants to match.
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