
Chapter 7

Laplace’s Equation
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7.1 The Laplace and Poisson equations

Let Φ(r ) be a scalar field in three dimensions, as in previous chapters. Laplace’s equation is simply

∇2Φ = 0 (7.1)

where, as we met in Chapter 3.6,∇2Φ ≡ ∇ · (∇Φ) ≡ div(gradΦ); here∇2 is called theLaplacian operator,
or just the Laplacian.

Remember from before, ifΦ is a scalar field, its gradient∇Φ is a vector field, and then taking div of that
gives us another scalar field: so Laplace’s equation is a scalar equation.

In Cartesianx,y,zcoordinates, things are simple: we recall the definitions from Chapter 3,

∇Φ =
∂Φ
∂x

i +
∂Φ
∂y

j +
∂Φ
∂z

k

and

∇ ·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

PuttingF = ∇Φ above, soF1 = ∂Φ/∂x etc, Laplace’s equation in Cartesians is

∇2Φ ≡ ∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 +

∂ 2Φ
∂z2 = 0 (7.2)

Note that if we are using other coordinates (e.g. cylindrical polars or spherical polars) we must use results for
grad and div in those coordinates from Chapter 5, so it will look different; we look at those later.

Laplace’s equation often occurs as follows: suppose we havea conservative vector fieldF, so thatF = ∇Φ
for some scalar fieldΦ as in Chapter 4.7; then if∇ ·F = 0 this gives Laplace’s equation∇2Φ = 0.
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Aside: Laplace’s equation is the simplest and most basic example ofone of the three types of second-
order linear partial differential equations (PDEs), knownas the“elliptic” type. Laplace’s equation is a linear
homogeneous equation.

A generalisation of Laplace’s equation isPoisson’s equationwhich is

∇2Φ = f (r) ,

where f (r) is a given scalar field. Laplace’s equation is clearly a special case of Poisson’s wheref (r) = 0 at
all points in the volume of interest.

The basic examples of the other types of PDE are thewave equation

1
c2

∂ 2 f
∂ t2 = ∇2 f ,

wherec is constant (usually the speed of sound or light) andt is time;
and theheat equationor diffusion equation

∂ f
∂ t

= κ∇2 f

wheref is temperature in a solid, andκ is a constant. (We met the heat equation with a single spatialvariable
in Example 6.8 on Fourier series ).

In maths, the wave equation is an example of a“hyperbolic” PDE and and the heat equation is a
“parabolic” PDE. These names are potentially confusing since the solutions have nothing to do with el-
lipses, parabolas, or hyperbolas, but this is just a “shorthand” because the powers and signs in the equations
look rather similar to the equations for ellipsoids, paraboloids and hyperboloids from Chapter 1.

Laplace’s and Poisson’s equations are very important, bothbecause of their occurrence in many physics
applications, and because they are the basic examples of elliptic PDEs. We are now going to spend the rest
of this chapter considering some solutions of Laplace’s equation in 2 dimensions.

We can see directly that there are some simple solutions of Laplace’s equation, e.g.

Φ = c constant

Φ = x

Φ = y

Φ = xy

Φ = x2−y2

etc

These clearly are solutions, by direct evaluation of∇2Φ from Eq. 7.2. There are in fact an infinite number of
general solutions to Laplace’s equation, which are known asharmonic functions.

We easily see that∇2 is a linear operator: that is

∇2(λ Φ1 + µΦ2) = λ ∇2Φ1 + µ∇2Φ2 .

for any two scalar fieldsΦ1,Φ2 and any two constantsλ ,µ (independent of position), since both grad and
div have this property. Hence ifΦ1 andΦ2 are both solutions of Laplace’s equation, so isλ Φ1 + µΦ2. Also,
if Ψ is a solution of Poisson’s equation andΦ is a solution of Laplace’s equation,Ψ+ Φ is also a solution of
Poisson’s equation, for the samef (r).

Aside: Considering some gravitational and electromagnetic examples of conservative fields, and using
the Divergence Theorem

∫

V
∇ ·FdV =

∫

S
F.dS
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we see that if∇ ·F = 0 everywhere there are no sources inside the volume, which for gravity means that
there is no mass there, and for electric field means that thereis no (net) charge. Hence, Laplace’s equation
describes the gravitational potential in regions of space where there is no matter, and the electric potential in
regions where there are no charges.

If instead there is a net charge densityρ , the electric fieldE satisfies

∇ ·E =
1
ε0

ρ(r)

whereε0 is a constant of nature. (This is one of the four Maxwell’s equations). Combining this withE =−∇Φ
gives

∇2Φ = − 1
ε0

ρ(r).

That is an example of Poisson’s equation as we met above. Laplace’s equation is of course a special case of
Poisson’s equation, in which the function on the right-handside is zero throughout the volume of interest.

7.2 Uniqueness of Solutions to Poisson’s (and Laplace’s) Equation

Here, we will prove that under suitable boundary conditionsthe solution of Poisson’s (or Laplace’s) equation
is unique. We shall then investigate what the solutions actually are in some simple cases, in each of Cartesian,
cylindrical and spherical polar coordinates.

As is common in differential equations, there are many general solutions (in fact an infinite family), so to
find the solution in a specific case we need to be given someboundary conditions. Recall for a 1-D ordinary
differential equation we often need a function value at one or two ends of a line; but here since Laplace’s
equation works in 3 dimensions, usually we need the value ofΦ(r) to be given at all points on a closed
surface S, and we solve Laplace’s equation to findΦ in the volumeinsideS. (Occasionally we solve over the
infinite volume outside S, with another boundary condition for Φ at infinity).

Theorem 7.1 Suppose that∇2U = f (r) throughout some closed volume V, f(r) being some specified func-
tion of r , and that the value of U is specified at every point on the surface S bounding volume V. Then, if a
solution U(r) exists to this problem, it is unique.

Proof:
Before proceeding, we need to recall Eq. 3.6, which was

∇ · (UF) = U∇ ·F+(∇U) ·F .

ChoosingF = ∇U in the above, we get the identity

∇ · (U∇U) = U∇2U +(∇U) · (∇U) (∗)

which we use below.

Now to prove the uniqueness theorem, suppose thatU1 andU2 are two scalar fields whichbothsolve the
given problem. DefineW ≡U1−U2 to be the difference of our two solutions.

Then, we know that∇2W = 0 inside volume V (by linearity), and W = 0 at all points on the surfaceS,
since bothU1 andU2 match the given boundary condition.
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Now we consider the volume integral
∫

V
|∇W|2dV =

∫

V
(∇W).(∇W)dV

=

∫

V
∇ · (W∇W)−W∇2W dV using(∗) above

=

∫

V
∇ · (W∇W) dV −0 since∇2W = 0 everywhere inV

=

∫

S
(W∇W) ·dS (by the Divergence Theorem)

= 0 becauseW = 0 onS

Now, the integrand on the LHS is a squared quantity, therefore is always non-negative, and its integral is zero.
This can only happen if∇W = 0 throughoutV (otherwise, if∇W was non-zero anywhere inV, the whole
integral on the LHS will be positive because there cannot be any negative bits in the integrand to cancel the
positive part, i.e. a contradiction).

Now ∇W = 0 throughoutV meansW is a constant throughoutV. But W = 0 on the boundary of V,
thereforeW = 0 throughoutV. HenceU1 = U2 throughout V, so the solution isunique. Q.E.D.

Note that we have actually proved uniqueness for Poisson’s equation, and Laplace’s is a special case of
that.

[ Aside: It is fairly clear that the final step in the displayed calculation above also works if, instead of
W = 0 on the boundary,∇W ·n = 0 wheren is the normal to the surfaceS. This corresponds to being given
a boundary condition for∇U ·n on the boundary, instead of the value ofU itself. Moreover, it still works if
at each point on the boundary eitherU or ∇U ·n is specified. The case whereU is given on the boundary
is called “Dirichlet boundary conditions”, and the case where∇U ·n is given is called “Neumann boundary
conditions”. If we only have Neumann conditions, ourW above is still a constant but not necessarily zero, so
the solutionU is unique up to addition of any arbitrary constant. We will only deal with Dirichlet boundary
conditions from here on, but you may meet the Neumann conditions in later courses. ]

The virtue of this uniqueness theorem is that it gives us a licence to make whatever assumptions or guesses
we like, provided we can justify them afterwards by showing both Laplace’s equation and the boundary
conditions are satisfied: if they are, the solution we found must be the right one, even if our method involved
some educated guesses.

Having proved uniqueness, we now demonstrate how to actually find solutions of Laplace’s equation in
some simple situations. In generalΦ(r) can depend on all three coordinates, but we will confine ourselves to
cases depending on two of the three coordinates: we will study the three most common coordinate systems
as before:

• In Cartesian coordinates, we will takeΦ(x,y), soΦ does not depend onz.

• In cylindrical polar coordinates, we will takeU(ρ ,φ) soU does not depend onzagain, and we relabel
Φ to U to avoid confusion with the angleφ .

• In spherical polar coordinates, we will takeU(r,θ ), soU does not depend onφ and we have rotational
symmetry around thezaxis.

The first two of these cases provide us with a nice geometricalinterpretation. ForΦ(x,y) or U(ρ ,φ), we
can forget about thez− coordinate: then things reduce to a two dimensional problem, and we have boundary
conditions given on the edge(s) of a region, (say a rectangleor circle) and we have to solve forΦ orU inside
the given region. Now imagineΦ as a varying heighth. Solving Laplace’s equation in 2D subject to boundary
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conditions is like taking a rubber sheet with its edges stuckto a rigid frame at the boundary with a “warp”
in the third dimension: the frame fixes the height at the boundary, while the rubber tries to minimize its total
area, which is equivalent to solving Laplace’s equation.

For spherical polarsU(r,θ ) though, the 2-D interpretation no longer applies because the sphere still lives
in 3-D.

Note: A “physical” example in three dimensions is as follows: suppose we take a uniform solid object
(of arbitrary shape), and attach a large number of tiny thermostat-controlled heater/coolers to the surface, and
set all the thermostats to some smoothly-varying function on the surface. The temperature inside,T(r), will
obey the heat equation

∂T
∂ t

= κ∇2T ,

with κ a constant and boundary conditions set by our thermostats. If we wait a long enough time so the
temperature distribution inside converges to a steady state, the LHS above will then be zero, so then the
temperature inside the solid will solve Laplace’s equation, with the given surface settings as the boundary
condition. (If our boundary condition isT =constant independent of position, we just get the obvious boring
solutionT = constant inside; but if the boundary settings vary around the surface, it becomes an interesting
problem. )

The choice of coordinates will be adapted to the geometry of the domain of interest and its boundaries,
which usually makes calculations easier. For rectangular boundaries we use Cartesians, for circles or cylin-
ders we use cylindrical polars, and for spherical boundaries we use spherical polars. For example, one may
need to calculate the electrostatic potential outside a charged sphere. This would be very messy in Cartesian
coordinates, and is much simpler if we use spherical polar coordinates instead. (This was one of the main
reasons for studying Chapter 5 )

7.3 2-D solutions of Laplace’s equation in Cartesian coordinates

We first develop a general method for finding solutionsΦ = Φ(x,y) to Laplace’s equation inside a rectangular
domain, with given boundary conditions forΦ on all four edges of the rectangle. In Cartesian coordinates, as
we saw above, Laplace’s equation is

∇2Φ = ∇ · (∇Φ) =
∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 +

∂ 2Φ
∂z2 = 0 . (7.3)

and in two dimensions we just drop the last term.

We will now try looking for a solution of the form

Φ(x,y) = X(x)Y(y).

whereX(x) is some function ofx only, andY(y) is some function ofy only. Such a solution is called a
separable solution. We cannot justify this in advance, but if it works then the uniqueness theorem tells us we
are OK. It is possible to prove that any solution can be written as a sum (possibly an infinite sum) of separable
solutions, but this is beyond the scope of this course.

Substituting the aboveΦ into (7.3) gives

d2X
dx2 Y +X

d2Y
dy2 = 0.

Dividing this byXY gives
1
X

d2X
dx2 = − 1

Y
d2Y
dy2 .
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Now, the left-hand side is a function ofx only, and the right-hand side is a function ofy only. This can only
be satisfied if both sides are the same unknown constant.

Note: to prove the constant,X(x) andY(y) must satisfy the above at anyx,y inside our rectangle: so
consider the above equation along a line(x0,y) with fixedx= x0 and varyingy. The LHS is fixed, so the RHS
must therefore be independent ofy, i.e. constant. The same argument withy0 fixed andx varying shows the
LHS is constant, and it must be the same constant.

Now we call that constant−λ with the minus sign for convenience, and both sides above equal−λ . Thus
we have

d2X
dx2 + λX = 0 and

d2Y
dy2 −λY = 0 .

If λ 6= 0, these equations are the differential equations for trigonometric and hyperbolic functions, which we
met in chapter 1, so we know their general solutions as follows:

If λ is positive, definek =
√

λ and the solution is

X = Acoskx+Bsinkx, Y = Ccoshky+Dsinhky,

whereA,B,C,D are any constants. Multiplying these together,

Φ = (Acoskx+Bsinkx) (Ccoshky+Dsinhky) . (7.4)

If λ is negative, definek =
√
−λ and then the solution is

X = Âcoshkx+ B̂sinhkx, Y = Ĉcosky+ D̂sinky.

whereÂ, B̂,Ĉ,D̂ are different constants. Then

Φ =
(

Âcoshkx+ B̂sinhkx
)(

Ĉcosky+ D̂sinky
)

. (7.5)

Note: in each of these solutions there is usually one more constantthan we really need. For example if
in (7.4)AC 6= 0 we can write

Φ = AC(coskx+B/Asinkx) (coshky+D/Csinhky)

using just three constantsAC, B/A andD/C: this means that in examples, one of the four constants can
usually be set to 1. One way to do this is to write (7.4) as

Φ = Lsin(kx+M)sinh(ky+N)

for some constantsL, M, andN. Usually this works fine, except it does not cover the case where D = 0.

Finally, we need to deal separately with the caseλ = 0:
that easily gives us solutionsX = A0x+B0 andY = C0y+D0 so

Φ = (A0x+B0)(C0y+D0) ,

with more constantsA0, B0, C0 andD0. It is usually convenient to multiply this out and re-write it as

Φ = α + βx+ γy+ δxy (7.6)

with α,β ,γ,δ as alternative constants.

Remember, from linearity,any sumof any of the above functions with anyk and any constants is also a
solution of Laplace’s equation. So, if we are given a boundary condition, solving Laplace’s equation basically
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reduces to choosing a“pick-and-mix” of any sum of the general solutions in order to satisfy all thegiven
boundary conditions: if we manage to do that, then we have solved the problem (and our solution is unique).
If we are lucky, a particular one of the separable solutions will do this, as we see in the next example.

Example 7.1. Find the solution of

∇2Φ ≡ ∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 = 0 (∗)

inside the rectangleD: 0≤ x≤ a, 0≤ y≤ b, given boundary conditionsΦ = 0 on the three sidesx = 0, y= 0
andx = a; andΦ = sin(pπx/a) ony = b, for some integerp.

We note here thatΦ is zero along three of the sides, and non-zero along the “top”side withy = b. Also
since sin0= 0 and sin(pπa/a) = 0, Φ is zero at the points(0,b) and(a,b) so the given boundary condition
is continuous at the corners.

Can we satisfy the boundary conditions in this case with one of the separable solutions above ? We
consider them one by one. Clearly (7.6) will not work since itdoesn’t contain a sin. The form (7.4) is more
promising, since if we take that equation and choose

A = 0 B = 1 k =
pπ
a

in there, the first bracket becomes 1sin(pπx/a) which is the function we want on the boundaryy = b. Now
we just need to chooseC,D to make the second bracket in 7.4 equal zero on the sidey = 0, and 1 on the side
y = b; this gives us two simultaneous equations forC,D :

Ccosh0+Dsinh0= 0

Ccosh(nπb/a)+Dsinh(nπb/a) = 1 ,

and the first of these impliesC = 0, then the second givesD = 1/sinh(nπb/a).

Finally putting the aboveA,B,C,D back into 7.4 gives us

Φ(x,y) = sin
pπx
a

sinh
pπy
a

/sinh
pπb
a

;

this satisfies all the boundary conditions and Laplace’s equation, so it is the unique solution.

In the above Example, we chose a “sin” in the boundary condition to make it easy: but for more general
boundary conditions, using just one separable solution will not work.

However, since Laplace’s equation is linear, we can add together separable solutions to get a more general
solution. In many cases, including the Cartesian one, it is possible to prove that every solution can be written
as a sum of separable solutions (this is called completenessof the separable solutions).

In the Cartesian case we would need to introduce different values ofA for eachk etc., which we typically
would denoteAk. Sincek can take any value, the “sum” of separable solutions can in general become an
integral1 overk; but for the rectangular boundaries in the example above we will only need to take integer
values ofp, call it n, so the general solution of Laplace’s equation inside the rectangle becomes

Φ(x,y) = α + βx+ γy+ δxy (7.7)

+
∞

∑
n=1

(Ancosnπx/a+Bnsinnπx/a)(Cncoshnπy/a+Dnsinhnπy/a)

+
∞

∑
n=1

(ancoshnπx/b+bnsinhnπx/b)(cncosnπy/b+dnsinnπy/b)

1This leads to the use of Fourier transforms, which is the nextstep, beyond this course, in Fourier methods
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We note that the sinnπx/a terms vanish atx = 0 andx = a so they will fit Dirichlet boundary conditions
which are zero on those boundaries. If multiplied by a sinhnπy they also vanish ony= 0 so are non-zero only
on y = b: to get similar forms which are zero aty = b and non-zero aty = 0 we need to take a combination
of sinhnπy and coshnπy which is zero aty = b: using the addition formula, this will turn out to look like
sinhnπ(b−y)/a.

( The cosnπx/a terms are not zero on the boundary, but have vanishing derivative n.∇Φ = ∂Φ/∂x at
x= 0 andx= a, so they will fit Neumann boundary conditions which are zero on those boundaries. Since we
will stick to Dirichlet problems as examples in this course,we will find we are using only the sine terms not
cos terms in our solutions).

For the other two sides atx = 0 andx = a, we just repeat the above interchangingx↔ y anda↔ b: so
a solution which is non-zero only on sidex = a will look like sinnπy/bsinhnπx/b, and a solution which is
non-zero only on the sidex = 0 will look like sinnπy/bsinhnπ(a−x)/b.

From these remarks, we can see that in order to fit general boundary conditions, we can solve it if we
break our function on the boundary into a (possibly infinite)sum of sin/cos functions i.e. a Fourier series.

Now we look at a boundary condition with a general function onone side:

Example 7.2. Consider the previous example but withΦ = g(x) on sidey = b for some giveng(x), and
Φ = 0 on the other three sides of the rectangle.

We try a linear combination of solutions of the form found above (keeping the conditions derived from
the other parts of the boundary):

Φ(x,y) =
∞

∑
n=1

Dnsinh
nπy
a

sin
nπx
a

.

Each term on the RHS is automatically a solution of Laplace’sequation and is zero on the other three sides,
so we just need to choose a set of constantsDn’s to make this match the giveng(x) along the sidey = b.

Putting iny = b above gives us

Φ(x,b) =
∞

∑
n=1

Dnsinh
nπb

a
sin

nπx
a

= g(x).

here theDn and the sinh don’t depend onx so we can rewrite this as

Φ(x,b) =
∞

∑
1

Ensin
nπx
a

= g(x) (∗)

with En ≡ Dnsinh(nπb/a).

Finding the coefficientsEn in equation(∗) is a standard problem in (arbitrary range) Fourier series from
the previous Chapter. The answer is

En =
2
a

∫ a

0
g(x)sin

nπx
a

dx.

Now we just need to evaluate this integral for alln, and then plug inDn = En/sinh(nπb/a) back to the
original equation to give us a solution

Φ(x,y) =
∞

∑
n=1

En

sinh(nπb/a)
sinh

nπy
a

sin
nπx
a

.

By uniqueness, we have foundthesolution.
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We still have a couple more issues to deal with. So far, we haveseen how to solve the problem as a
Fourier series when the boundary conditions are zero on three sides and non-zero on any one side.

If the boundary conditions are non-zero on all four sides butstill zero at all four corners, we can solve
this just by breaking it into four separate problems, each ofwhich has non-zero boundary values on exactly
one side: this gives four solutionsΦ1,Φ2,Φ3,Φ4 each solving one different side: then add the four solutions,
by linearity of Laplace’s equation.

If the four corners are all one constant value, just subtractthis constant from the boundary conditions,
solve as above, and add the constant back to the final solution.

Finally, we have to deal with the case where the given boundary conditions are different (but still contin-
uous) at the four corners. This can be dealt with by Eq. 7.6 above: given the four values at the corners, it is
straightforward to choose our four constantsα,β ,γ,δ to give a solution (call itΦ0) which matches the given
boundary values at all four corners, by starting with the(0,0) corner, then the(0,a), etc. Next, we subtract
thatΦ0(x,y) from all the given boundary conditions on the edges to get a new set of boundary conditions for
Φ1 + Φ2 + Φ3 + Φ4; solveΦ1 to Φ4 by treating the four sides separately as above: and finally add all five
solutionsΦ0 + . . .+ Φ4 to get the answer.

This whole process is quite lengthy, but we have seen how to doit in principle.

Example 7.3. Consider a rectangle with 0≤ x≤ 2, 0≤ y≤ 1, and boundary values forΦ(x,0) = sinπx
etc. as shown at the left diagram in Figure 7.1.

sinπx

2y

x

sinπy

sinπx

0

0

sinπy

Figure 7.1: Left: boundary conditions onΦ(x,y). Right: boundary conditions after subtracting offΦ0 = xy
along the edges.

First we look at the boundary values at the four corners: reading these off the diagram we haveΦ = 0 at
three corners andΦ(2,1) = 2 at the corner(x = 2,y = 1).
So, now we solve for the coefficients inΦ0(x,y) = α + βx+ γy+ δxy so as to fit the given boundary values
only at the four corners: starting at the origin and working out is easiest, so
Φ0(0,0) = 0⇒ α = 0,
Φ0(2,0) = 0⇒ β = 0,
Φ0(0,1) = 0⇒ γ = 0,
Φ0(2,1) = 2⇒ δ = 1 ;
therefore

Φ0(x,y) = 0+0+0+1xy = xy

Now we evaluateΦ0 along all four edges: it is zero on the left and bottom edges, it is Φ0(2,y) = 2y on
the right edge andΦ0(x,1) = x along the top edge. Subtracting those from the original boundary conditions
leaves the new boundary conditions in the right panel of Figure 7.1: by construction, these are zero at all
corners. We can now matchΦ(x,0) along the bottom side using

Φ1(x,y) =
sinh(π(1−y))sinπx

sinh(π)
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(this is like example 7.1), and matchΦ(0,y) along the left-hand side with

Φ2(x,y) =
sinh(π(2−x))sinπy

sinh(2π)
.

The full solution is
Φ(x,y) = Φ0 + Φ1+ Φ2 .

Exercise 7.1. Find Φ(x,y) in 0 < x < π , 0< y < 1, satisfying the following conditions:

∇2Φ = 0 in 0< x < π , 0 < y < 1,

Φ = sinx ony = 0

andΦ = 0 on the other three sides of the rectangle. Is the solution unique? 2

7.4 2-D solutions of Laplace’s equation in cylindrical polar coordi-
nates

We now look at cylindrical polar coordinates: this is the natural choice where the boundary conditions are
given on a circle in 2D or a cylinder in 3D. It will turn out a bitsimpler than Cartesians, since there are no
corners to worry about on the boundary.

We also change our label for our scalar field fromΦ to U , to avoid confusion with the angleφ (of course,
this is just a re-labelling and makes no real difference).

From chapter 5, in cylindrical polar coordinates(ρ ,φ ,z), the grad of a scalar fieldU is

∇U =
∂U
∂ρ

eρ +
1
ρ

∂U
∂φ

eφ +
∂U
∂z

ez

and the divergence ofF = Fρeρ +Fφeφ +Fzez is

∇ ·F =
1
ρ

[

∂ (ρFρ)

∂ρ
+

∂Fφ

∂φ
+

∂ (ρFz)

∂z

]

.

Putting these together we obtain

∇2U ≡ div(∇U) =
1
ρ

[

∂
∂ρ

(

ρ
∂U
∂ρ

)

+
∂

∂φ

(

1
ρ

∂U
∂φ

)

+
∂
∂z

(

ρ
∂U
∂z

)]

,

which simplifies to

∇2U =
1
ρ

∂
∂ρ

(

ρ
∂U
∂ρ

)

+
1

ρ2

∂ 2U
∂φ2 +

∂ 2U
∂z2 .

Consider the case when everything in the problem is independent ofz, soU = U(ρ ,φ). Once again we
seek aseparablesolution, this time we will write it as

U(ρ ,φ) = R(ρ)S(φ) .

whereR andSare functions to be found. Putting this into∇2U , working out and dividing byRSgives

ρ
R

d
dρ

(

ρ
dR
dρ

)

=
−1
S

d2S
dφ2 (∗)
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Once again, the LHS is a function of onlyρ and the RHS is a function of onlyφ , so by the same argument as
before, both sides are some (unknown) constant, call itλ .

Setting the RHS above toλ , the differential equation forS(φ) is then

d2S
dφ2 + λS= 0 ,

which we met before: ifλ > 0, it has the general solution

S(φ) = Acos(
√

λφ)+Bsin(
√

λ φ) .

If λ < 0 we would similarly have

S(φ) = Âcosh(
√

−λφ)+ B̂sinh(
√

−λ φ) .

But, in polar coordinatesS(φ) must be periodic, i.e. the solution must be the same if we add 2π to φ , since
any pair of valuesφ0 andφ0 +2π represent the same point in space; the sinh and cosh solutions with λ < 0
cannot obey this, so are “forbidden” and we discard them. Thesin and cos solutions will obey this periodic
condition iff

√
λ is aninteger. Thus, the only allowed values ofλ areλ = m2 wherem is a positive integer

(without loss of generality) and we can write the solution for a particular integerm as

S(φ) = Amcosmφ +Bmsinmφ .

Now, going back toR(ρ) and setting the LHS of (*) equal toλ = m2 gives

ρ
d

dρ

(

ρ
dR
dρ

)

= m2R.

We guess a power-law solutionR= Cρq for constantsC,q; substituting and working through, that simplifies
to

q2 = m2

soq = ±m. This is two independent solutions forq, and each has its own constant, so we write

R(ρ) = Cmρm+Dmρ−m ,

and againCm,Dm are constants; finally multiplying outSandR, we have a solution forU of the form

U(ρ ,φ) = (Amcosmφ +Bmsinmφ)
(

Cmρm+Dmρ−m)

.

for any integerm> 0.

The caseλ = 0 is again a special case: then we integrate twice givingR=C0 lnρ +D0, andS= A0φ +B0.
In most cases we setA0 = 0 by requiring uniqueness on adding 2π to φ ; ( but note there are special cases
where it is acceptable forU not to be unique, provided∇U is unique. This happens in fluid dynamics, for
example, where we are interested in the fluid velocityv = ∇U rather than the potentialU itself. In that case
we require that∇U be single valued, which allows us to use anA0 term).

Combining the above, the general solution of Laplace’s equation in cylindrical polars is a linear combi-
nation of all these above for them= 0 case and every positivem≥ 1: each of thesem has its own constants,
so we get

U(ρ ,φ) = (A0φ +B0)(C0 lnρ +D0)+
∞

∑
m=1

(Amcosmφ +Bmsinmφ)
(

Cmρm+Dmρ−m)

. (7.8)

Note that this form implies that boundary conditions likeg(R,φ) given on a circle or cylinder of fixedρ = R
leads to a Fourier series problem inφ (once the terms inA0φ have been found). However, in many cases we
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need only a finite number of terms and can use intelligent guesswork (essentially, including only terms with
thesamevalues ofm which appear in the boundary conditions) to find the requiredset of constants.

Also, note the presence of both positive and negative powersof ρ on the RHS: if we are solving a problem
insidea circle with boundary condition given on the circle, we willrequire allDm to be zero form≥ 1 so that
the solution is bounded at the originρ = 0. Alternatively, we can be given boundary conditions on a circle
and asked for a solutionoutsidethe circle, requiring the solution to be well-behaved at largeρ → ∞: then we
must set allCm to zero form≥ 1, and use onlyDm terms.

Finally, we may be asked to solve Laplace’s equation in anannulus between two circles of given radii,
with boundary conditions given on both the inner and outer circles; in that case we will need to keep both
Cm andDm terms, and we’ll get a pair of simultaneous equations for each m to match the given boundary
conditions on both circles.

Example 7.4. Solve Laplace’s equation∇2U(ρ ,φ) = 0 outside the unit circle, with boundary conditions
U(1,φ) = 2sin2 φ on the unit circle, andU ∼ lnρ at largeρ .

First look at the general solution 7.8. That does not containa sin2, but since 2sin2 φ = 1− cos2φ , the
latter form does look like a sum of two terms in 7.8: a constant(m = 0) term plus a cos2φ term which
looks like anm= 2 term; so we can (correctly) guess that the same is true of thesolution, i.e. we choose all
Am. . .Dm coefficients withm= 1 andm≥ 3 to be zero, so the infinite sum becomes just one term withm= 2.
We also setB2 = 0 since our boundary condition only contains a cos2φ not a sin2φ .

The large-ρ condition impliesA0 = 0, and alsoC2 = 0 since we don’t want aρ+2 term at largeρ .

Writing out 7.8 without all those zeros leaves us with our “educated guess” solution as

U = B0D0 +B0C0 lnρ +A2D2 cos(2φ)ρ−2 .

Again this has several “redundant” constants, and we can just rewrite it as

U = α + β lnρ + γ cos(2φ)ρ−2

Finally, matching the given boundary values on the circleρ = 1 gives usα = 1,γ = −1, and the largeρ
condition gives usβ = 1, so the unique solution is

U(ρ ,φ) = 1+ lnρ − cos2φ
ρ2 .

We can check this easily: it is a particular case of 7.8 so it does solve Laplace’s equation. And it matches the
given boundary conditions onρ = 1 and largeρ ; so it is the unique solution.

Exercise 7.2.Consider the regionD defined bya≤ ρ ≤ b, 0≤ φ ≤ π , −∞ < z< ∞. Sketch the region in
a plane perpendicular to thez-axis which lies inD. On the boundariesρ = a, φ = 0 andφ = π , U = 0 while
on the boundaryρ = b, U = φ sinφ . Find the solutionU of Laplace’s equation inD, independent ofz, which
satisfies these boundary conditions.

[You may assume that on 0≤ φ ≤ π

φ sinφ =
∞

∑
k=1

16k
π(4k2−1)2 sin2kφ .]

2

Note: Finally, it is also worth noting that solutions likeρncos(nφ) can also be expanded as polynomials
in x,y: for example, cos(4φ) = 8cos4 φ −8cos2 φ +1, andρ4 = (x2+y2)2, therefore a bit of arithmetic leads
to ρ4cos4φ ≡ x4−6x2y2 +y4, and you can use the Cartesian formula to check that∇2 of that is zero. These
may occasionally be useful, but they rapidly get unmanageable for largen.
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7.5 Axisymmetric solutions of Laplace’s equation in spherical polar
coordinates

Now we consider what to do in problems with a naturally spherical geometry. First, we need to work out
what∇2U is in spherical polar coordinates.

As before, we have
∇2U ≡ div(∇U).

which is true in any coordinate system. Now in spherical polar coordinates,

∇U =
∂U
∂ r

er +
1
r

∂U
∂θ

eθ +
1

r sinθ
∂U
∂φ

eφ

and the divergence ofF = Frer +Fθeθ +Fφeφ is

∇ ·F =
1

r2sinθ

[

∂ (r2 sinθFr)

∂ r
+

∂ (r sinθFθ )

∂θ
+

∂ (rFφ )

∂φ

]

.

Putting these together we obtain

∇2U =
1

r2 sinθ

[

∂
∂ r

(

r2sinθ
∂U
∂ r

)

+
∂

∂θ

(

sinθ
∂U
∂θ

)

+
∂

∂φ

(

1
sinθ

∂U
∂φ

)]

,

which simplifies to

∇2U =
1
r2

[

∂
∂ r

(

r2 ∂U
∂ r

)

+
1

sinθ
∂

∂θ

(

sinθ
∂U
∂θ

)

+
1

sin2 θ
∂ 2U
∂φ2

]

.

Many problems areaxisymmetric– that is, there is no dependence on theφ coordinate. In such cases
U =U(r,θ ) and∂ (anything)/∂φ = 0. As in the previous cases, we proceed by seeking aseparablesolution:

U(r,θ ) = R(r)S(θ ).

[different meanings from theR andS in the last section]. Thus∇2U = 0 becomes

1
r2

[

∂
∂ r

(

r2 ∂R
∂ r

)

S+
1

sinθ
∂

∂θ

(

sinθ
∂S
∂θ

)

R

]

= 0

which rearranges to
1

R(r)
∂
∂ r

(

r2 ∂R
∂ r

)

=
−1

S(θ )sinθ
∂

∂θ

(

sinθ
∂S
∂θ

)

.

Once again, the left-hand side is a function ofr only, and the right-hand side is a function ofθ only. But they
are equal, and so they must both be some constant, sayλ . Thus

d
dr

(

r2 dR
dr

)

−λR= 0 (7.9)

and
1

sinθ
d

dθ

(

sinθ
dS
dθ

)

+ λS= 0. (7.10)

We consider equation (7.10) first. If we definew = cosθ , then

d
dw

=
−1

sinθ
d

dθ
,
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so equation (7.10) can be written in the form

d
dw

(

(1−w2)
dS
dw

)

+ λS= 0.

which is calledLegendre’s differential equation. We see in the next Section that onlyLegendre polynomial
solutionsS= Pℓ(w) = Pℓ(cosθ ) are allowed, i.e. the cases whereλ = ℓ(ℓ+1) andℓ is an integer, andPℓ is
the Legendre polynomial of orderℓ.

Going back to equation (7.9), insertingλ = ℓ(ℓ+1) thenR(r) satisfies

d
dr

(

r2 dR
dr

)

− ℓ(ℓ+1)R= 0. (7.11)

We try looking for a power-law solution,R= Arp of this withA, p constant: inserting it we find

p(p+1)Arp = ℓ(ℓ+1)Arp

i.e. p(p+1) = ℓ(ℓ+1). Givenℓ, this is a quadratic equation forp. It has solutionsp = ℓ andp = −(ℓ+1).
Hence the general solution forR(r) is

R= Arℓ +
B

rℓ+1 .

and so the solution forU is

U(r,θ ) =

(

Arℓ +
B

rℓ+1

)

Pℓ(cosθ ).

Because∇2 is a linear operator, any linear combination of solutions isalso a solution of Laplace’s equation ,
so again the general solution is an infinite sum:

U(r,θ ) =
∞

∑
n=0

(

Anrn +
Bn

rn+1

)

Pn(cosθ ). (7.12)

The individual functions on the right areaxisymmetric spherical harmonicsand they form a set of axisym-
metric solutions of Laplace’s equation which is complete, i.e. (7.12) can be shown to be the most general
axisymmetric solution.

One can match arbitrary boundary conditions to an infinite series of Legendre polynomials using their
orthogonality properties (see later). However, in this course we will stick to problems where only a few terms
are needed and we can see what they are by intelligent guesswork: the essential rule isonly to put into the
prospective answer those Legendre polynomials which appear in the boundary conditions.

Example 7.5. A perfectly spherical conductor, centre 0, radiusa, is placed in an otherwise uniform elec-
tric field E0. (Mathematically, the condition for a conductor is that theelectrostatic potentialU is constant.)
What is the potential everywhere outside the conductor? Andinside?

Outside the conductor (r > a), we want to solve∇2U = 0. The boundary conditions are thatU =constant
on r = a and that far from the conductor∇U → E0.

The unperturbed field (the one before the conductor was added) is E = E0k, choosing the z-axis to align
with the field. Converting this to thee’s of spherical polars, we have

E0 = E0cosθ er −E0sinθ eθ

which is what the field must look like asr → ∞: this has potential

U0 = E0r cosθ + constant= E0rP1(cosθ )+ constant.
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(Note that thisis a solution of Laplace’s equation.) Now our potential

U =
∞

∑
n=0

(

Anrn +
Bn

rn+1

)

Pn(cosθ ) →
∞

∑
n=0

AnrnPn(cosθ )

asr → ∞. But this must equalU0 = E0rP1(cosθ )+const. at larger, so we can deduce thatA1 = E0, A0 is an
arbitrary constant, andAn = 0 for all othern.

On r = a we wantU to be constant, i.e. it should not vary withθ . Now onr = a

U(a,θ ) = A0 +
B0

a
+

(

E0a+
B1

a2

)

P1(cosθ )+
∞

∑
n=2

Bn

an+1Pn(cosθ )

The potential onr = a will vary with θ unless all the coefficients ofPn(cosθ ) (n > 0) each vanish. Hence we
must haveB1 = −E0a3 to make the bracket vanish, andBn = 0 (n≥ 2). Hence finally the solution is

U(r,θ ) = A0 +
B0

r
+E0

(

r − a3

r2

)

cosθ .

Note thatA0 andB0 are undetermined constants. To determineB0 we need additional information to ascertain
the potential difference between the surface of the conductor and a point at infinity. The constantA0 will
always be arbitrary, because the absolute value of the potential has no physical meaning (only its gradient is
actually observable).

Inside, sinceU is constant on the boundary, it must be constant inside the conductor.

This last point has practical consequences. The voltage in space [in a static field] satisfies Laplace’s
equation. If you stand under an electricity pylon, there is arather large voltage change—thousands of volts—
between your head and your feet. But if you stand inside a wirecage (often called a Faraday cage), then
the wire acts like a continuous conductor and equalizes the voltage over the cage and hence inside the cage
too. That is why a wire cage provides a refuge from lightning.Cages also provide screening from electronic
surveillance, or, by putting equipment inside them, safetyfor the people outside.

Exercise 7.3. Show that at a general point the following are solutions of Laplace’s equation∇2U = 0.

1. U = rn cosnθ , for an integern, in cylindrical polar coordinates.

2. U = r sinθ cosφ , in spherical polar coordinates.

2

7.6 Introduction to Legendre polynomials

We now take a brief look at the Legendre polynomials. These are defined as the solutions ofLegendre’s
differential equation which is

d
dx

(

(1−x2)
d f
dx

)

+ λ f = 0.

or similar, whereλ is an arbitrary constant. The solution of this is outside thescope of this course, but
essentially we search for power-law solutions of the form

f (x) = ∑apxp .
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Then, it can be shown that the series only converges at bothx = ±1 if λ = ℓ(ℓ+1) whereℓ is an integer, and
we can takeℓ as a non-negative integer without loss of generality.

Then, the functionf (x) which satisfies the above D.E. forλ = ℓ(ℓ+1) is called theLegendre polynomial
of “degree”ℓ, usually writtenPℓ(x). (It is common to use letterℓ for this integer, since when things are
extended to 3-Dspherical harmonics, lettersn andm are generally used for other functions in ther andφ
coordinates.)

There is an arbitrary multiplicative constant in eachPℓ, which is chosen so thatPℓ(1) = 1 for all ℓ. It turns
out thatPℓ is anℓ-th order polynomial, and involves only even/odd powers ofw if ℓ is even/odd.

The solutions can be obtained byRodrigues’ formula

Pℓ(x) =
1

2ℓℓ!
dℓ

dxℓ
[(x2−1)ℓ] (7.13)

There is also a recurrence relation between them,

Pℓ+1(x) =
1

ℓ+1
[(2ℓ+1)xPℓ(x)− ℓPℓ−1(x)]

which gives all of them, working upwards fromP0 andP1.

Starting from Rodrigues’s formula

P0(x) = 1

P1(x) = x

then the recurrence relation gives subsequent ones as

P2(x) =
1
2
(3x2−1)

P3(x) =
1
2
(5x3−3x)

P4(x) =
1
8
(35x4−30x2+3)

etc

Another important property isorthogonality, i.e. the fact that
∫ 1

−1
Pm(w)Pn(w) dw = 0 if m 6= n

=
2

2n+1
if m= n

This property enables us to express any general function as an infinite series of Legendre polynomials, by a
device similar to that for calculating Fourier coefficients.

In this course we will only look at simple functions, in whichcase a general n-th order polynomial can be
rearranged into a sum of the firstn Legendre polynomials, e.g. suppose we are given a boundary condition
in Laplace’s equation looking likef (w) = w2 + w+ 1, (w ≡ cosθ ) we need to choose a sum of Legendre
polynomials to match this. We need(2/3)P2(w) to match the quadraticw2 term. Then we need 1P1(w) to
match the linear term. Finally for the constant, the(2/3)P2 has given us a−1/3 constant term, so to match
the 1 we need+(4/3)P0 on the right hand side. So in that example,

w2 +w+1≡ 2
3

P2(w)+1P1(w)+
4
3

P0(w)

and we can now put the right-hand-side into the general solution to Laplace’s equation, 7.12 , and choose
suitable constants to match.
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