
Adiabatic Approximation

The reaction of a system to a time-dependent
perturbation depends in detail on the time
scale of the perturbation.

Consider, for example, an ideal pendulum, with
no friction or air resistance, oscillating back
and forth in a vertical plane. If we move the
support ‘quickly’, the motion of the bob will
be wildly chaotic. On the other hand, if we
move the support ‘gradually’, the bob will
continue to oscillate smoothly, in the same
plane (or one parallel to it) and with the
same amplitude.

This gradual change in the external conditions
characterizes an adiabatic process. The quick
movement which had a chaotic effect is often
referred to as sudden.

Note that the term ‘adiabatic’ does not imply
anything with regard to the conservation of
the energy of the system.

Not surprisingly, quantum systems are affected
in ways analogous to this classical system.



First, we must get more quantitative regarding

the qualitative phrases ‘quickly’ and

‘gradually’.

Considering the case of the pendulum in more

detail, there is clearly a time scale associated

with any movement of the support which is

appreciable on the scale of its oscillation

amplitude, Te. Similarly, Ti is related to the

oscillation period of the bob. An adiabatic

process is one for which Te � Ti.

Note that the overall scale of the total change

in position is not important, and could be

very large.

The basic strategy for analyzing an adiabatic

process is to first solve for the behavior of the

system with the external parameters held

fixed. Then, at the end of the calculation,

allow them to change.



For example, the classical period of a pendulum

of constant length L is 2π
√
L/g. If the length

is now changing ‘gradually’ (adiabatically),

then the period is presumably 2π
√
L(t)/g.

We have used this approach already. For

example, the frequency of vibration of the

nuclei of the hydrogen molecule was obtained

by assuming a separation R, solving the

electron eigenstate problem for fixed nuclei,

determining which R yields the lowest total

energy, and calculating the net

nucleus-nucleus force (problem 7.10). In

molecular and solid state physics, this

differential treatment of electron and nuclear

motions is called the ‘Born-Oppenheimer

approximation’.



Adiabatic theorem

Figure - A model for adiabatic change of the

Hamiltonian, from H i to Hf .

Suppose that the Hamiltonian changes

‘gradually’ from Hi to Hf . If the particle is

initially in the nth eigenstate of Hi, it will be

carried (under the Schrödinger equation) into

the nth eigenstate of Hf .

It is assumed that the spectrum is discrete, and

nondegenerate throughout the transition from

Hi to Hf , so that there is no ambiguity about

the ordering of the eigenstates.



For example, consider a particle in the ground
state of the infinite square well:
ψi0(x) =

√
2
a sin(πax).

If we move the wall gradually out to 2a, the
adiabatic theorem predicts that the particle
will end up the in the ground state of the
expanded well: ψf0(x) =

√
1
a sin( π2ax).

On the other hand, if we move the wall
‘suddenly’, the particle position cannot
respond on the time scale of the change.
Thus the final state is a complicated sum
over all of the eigenstates of Hf :
ψ(x) =

∑
ψ
f
n(x)〈ψfn|ψi0〉.

Figure 10.2 - (a) Particle starts out in the ground

state of the infinite square well. (b) If the wall moves

slowly, the particle remains in the ground state. (c) If

the wall moves rapidly, the particle is left

(momentarily) in its initial state (which is not an

eigenstate of the (new) Hamiltonian).



Since the proof of the adiabatic theorem is

complicated, I will give you only a plausibility

argument.

Consider a Hamiltonian which changes

‘gradually’ from Hi to Hf = Hi + V between

t = 0 and t = T , and focus on a particle in

the state n at t = 0 (i.e., Ψ(0) = ψin).

Figure - A model for an adiabatic transition, where

H ′(t) = V f(t).



If V is small enough that we can use

time-dependent perturbation theory, the

overlap of the final-state w.f. with the e.s.’s

of Hf is |〈Ψ(T )|ψfm〉|2 = δnm +O(V 2). In

other words, the probability of inducing a

transition is O(V 2).

If V is not small, we divide V into N steps of
V
N . This yields a total transition probability of

order < N(VN )2 = V 2

N → 0 as N →∞. ‘QED’



Berry’s phase

Consider again the portable pendulum.
Suppose we place it at the North Pole and set
it oscillating in the plane which includes Troy.
Ignoring for the moment the rotation of the
earth, let’s move the pendulum adiabatically
south along the intersection of that plane
with the earth to the equator, for example,
then west along the equator for, say, 30◦, and
then north along that longitude line to the
North Pole. At all times, the pendulum has
oscillated in a plane oriented ‘north–south’.
Yet now that plane makes an angle of 30◦
with the original plane of oscillation.

Figure 10.5 - A path for adiabatic transport of a

pendulum on the surface of the earth.



The axis of oscillation has been rotated by

Θ = 30◦ about a perpendicular axis (i.e., the

earth’s axis). A moment’s reflection suggests

that this rotation occurred during the

movement along the equator. Furthermore,

analysis shows that the amount of the

rotation is equal to the solid angle subtended

at the center of the earth by the path on the

surface: Θ ≡ Ω.

Figure 10.6 - Arbitrary path on the surface of a sphere,

subtending a solid angle Ω.

The action of a Foucault pendulum can be

explained in the same way, differing only in

that the earth’s rotation is the mechanism for

the pendulum tracing the path.



Figure 10.7 - Path of a Foucault pendulum in the

course of one day.

A system such as this, which does not return to

its original state when transported around a

closed loop, is said to be nonholonomic.

[Note that the ‘transport’ need not be

physical.]

In the context of quantum mechanics, we will

be concerned with situations in which

external parameters are altered in some way,

and then returned to their initial values, all

adiabatically.



It is important to understand exactly what we

mean by the adiabatic theorem. In particular,

the statement that the system remains in its

‘original state’ throughout an adiabatic

process does not preclude a change in phase.

[In general in quantum mechanics, there is a

certain arbitrariness regarding phase.]

Even in the case of a time independent

Hamiltonian, a particle in the nth e.s. will

undergo a steady progression of its phase:

Ψn(x, t) = ψn(x)e−iEnt/~.

Generalizing this to the case of a Hamiltonian

which changes with time,

Ψn(x, t) = ψn(x, t)e−
i
~
∫ t

0 dt
′En(t′)eiγn(t).

The factor containing the integral of En(t′)
over time generalizes the standard factor,

e−iEnt/~ to the case where En is a function of

time. This is known as the ‘dynamic phase’.

Any extra phase, γn(t), is called the

‘geometric phase’.



To determine the ‘geometric phase’, substitute

the generalized equation for Ψn(x, t) into the

time-dependent Schrödinger equation:

⇒ dγn
dt = i〈ψn|∂ψn∂t 〉. γn(t) is obtained by

integrating this equation over t.

The phase γn(t) is determined by some set of

parameters in the Hamiltonian which are

changing as a function of time,

R1(t), R2(t), · · · ⇒ R(t). Assuming that all of

these parameters return to their original

values after some interval T , we can

substitute an integral over these parameters

for the one over t:

γn(T ) = i
∮
dR · 〈ψn|∇Rψn〉.

This is called ‘Berry’s phase’.



Several points can be made with regard to γn:

1) γn(t) is real, and can be shown to vanish if

the ψn can be defined as real.

2) Berry’s phase is measurable since it

represents a change in the phase. Simply split

a particle beam into two parts, put one

through an adiabatically-changing potential,

and combine the beams. The resultant phase

change in one beam (only) will produce

measurable interference.

3) The assumption of adiabaticity is required

for the derivation.



Aharonov-Bohm effect

In classical electrodynamics, the potentials φ

and A are not directly measurable, only the

resultant fields: E = −∇φ− ∂A
∂t , B = ∇×A.

In quantum mechanics, the potentials play a

more fundamental role:

H = 1
2m

(
~
i∇− qA

)2
+ qφ.

In 1959 Aharonov and Bohm showed that

electrons can be affected traveling through a

region where E and B vanish but A does not,

completely contrary to classical expectations.



They proposed an experiment in which a beam

of electrons is split in two, the sub-beams

pass on either side of an ideal solenoid, and

are combined afterwards. The beams are kept

well away from the solenoid to avoid any B

field (which is confined to the interior of the

solenoid with only fringe fields outside).

Nonetheless, the two beams are observed to

arrive with phases which differ by qΦ
~ , where

Φ is the magnetic flux through the solenoid.

Figure 10.11 - Aharonov-Bohm effect: electron beam

splits, with half passing on either side of a long

solenoid.



In contrast with the behavior of B outside the

solenoid, A declines only slowly with distance

from the solenoid: A = Φ
2πrφ̂.

Putting A into H, one can show that the

spatial dependence of A leads directly to the

following result for Berry’s phase:

γn(T ) = q
~
∮
dR ·A(R) = q

~
∫
da · (∇×A) = qΦ

~ ,

where R is now a spatial variable.

This result agrees with the experimental result,

and shows that the Aharonov-Bohm effect is

a particular instance of geometric phase.


