
5.1 Two-Particle Systems

We encountered a two-particle system in

dealing with the addition of angular

momentum. Let’s treat such systems in a

more formal way.

The w.f. for a two-particle system must depend

on the spatial coordinates of both particles as

well as t: Ψ(r1, r2, t), satisfying i~∂Ψ
∂t = HΨ,

where H = − ~2

2m1
∇2

1 − ~2

2m2
∇2

2 + V (r1, r2, t),

and
∫
d3r1d

3r2 |Ψ(r1, r2, t)|2 = 1.

Iff V is independent of time, then we can

separate the time and spatial variables,

obtaining Ψ(r1, r2, t) = ψ(r1, r2) exp(−iEt/~),

where E is the total energy of the system.



Let us now make a very fundamental

assumption: that each particle occupies a

one-particle e.s. [Note that this is often a

poor approximation for the true many-body

w.f.] The joint e.f. can then be written as the

product of two one-particle e.f.’s:

ψ(r1, r2) = ψa(r1)ψb(r2).

Suppose furthermore that the two particles are

indistinguishable. Then, the above w.f. is not

really adequate since you can’t actually tell

whether it’s particle 1 in state a or particle 2.

This indeterminacy is correctly reflected if we

replace the above w.f. by

ψ(r1, r2) = ψa(r1)ψb(r2)± ψb(r1)ψa(r2).

The ‘plus-or-minus’ sign reflects that there

are two distinct ways to accomplish this.

Thus we are naturally led to consider two

kinds of identical particles, which we have

come to call ‘bosons’ (+) and ‘fermions’ (−).



It so happens that all particles with integer
spins are bosons (e.g., photons, mesons) and
all particles with half-integer spins are
fermions (e.g., electrons, protons). This
connection between ‘spin’ and ‘statistics’ can
be proven in relativistic quantum mechanics,
but must be accepted as axiomatic in the
nonrelativistic theory.

It follows from the form of the w.f. that two
identical fermions cannot occupy the same
state (e.g., ψa) because then the
‘antisymmetric’ wavefunction would be
identically zero. This is simply the Pauli
exclusion principle.

Let’s define an ‘exchange’ operator, P ,
3 Pf(r1, r2) = f(r2, r1). P2 = 1, so the e.v. of
P = ±1. Furthermore, two identical particles
must be treated identically by the
Hamiltonian ⇒ [P,H] = 0. Thus we can find
e.s. of H which are also e.s. of P ; i.e., either
symmetric or antisymmetric under exchange:
ψ(r1, r2) = ±ψ(r2, r1). Like its spin, this
symmetry property is intrinsic to a particle,
and cannot be changed.



The ramifications of this symmetry property

can be illustrated with a simple

one-dimensional example.

Suppose we ask for the expectation value of

(x1 − x2)2 in three distinct states:

(1) distinquishable particles; indistinguishable

particles which are (2) bosons and (3)

fermions.

(1) distinguishable particles,

ψ(x1, x2) = ψa(x1)ψb(x2):

〈(x1 − x2)2〉d = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b.

(2,3) indistinguishable particles,

ψ(x1, x2) = ψa(x1)ψb(x2)± ψb(x1)ψa(x2):

〈(x1− x2)2〉± = 〈(x1− x2)2〉d∓ 2|〈x〉ab|2, where

〈x〉ab ≡
∫
dx xψ∗a(x)ψb(x).

We conclude that bosons are found closer to

one another than are distinguishable particles,

while fermions are found further apart. Other

properties are similarly affected.



The above effect is not the result of an actual

physical force, but it does appear as though

bosons are attracted to one another and

fermions are repelled by one another. It is

therefore common, if misleading, to refer to

this effect as arising from an ‘exchange force’.

In principle, every particle is linked to every

other indistinguishable particle in the

universe. Fortunately for us, the last term is

very small without an appreciable overlap of

ψa with ψb, and can be neglected in many

cases in practice.



We presume that there is no coupling between

the spin and position of particles, which leads

to the separability of these coordinates and

the property that the w.f. can be written as a

product of a spin and a spatial part: ψ(r)χ(s).

It follows, then, that the requirement that

fermions occupy antisymmetric w.f.’s refers

to this product of the spatial and spin parts.

Thus, a symmetric spin state (e.g., a triplet)

must be associated with an antisymmetric

spatial w.f. (an antibonding combination),

while an antisymmetric spin state (e.g., a

singlet) must be associated with a symmetric

spatial w.f. (a bonding combination).

Figure 5.1 - Covalent bond: (a) symmetric

combination produces attractive force; (b)

antisymmetric combination produces repulsive force.



Atoms

For a neutral atom,

H =
Z∑

j=1
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For fermions, the spatial part of the w.f. must

satisfy Hψ = Eψ and the complete w.f.

φ = ψ(r1, r2, . . . , rZ)χ(s1, s2, . . . , sZ) must be

antisymmetric with respect to the exchange

operator.

For hydrogen, Z = 1, so there is no

contribution from the electron–electron

interaction term. φ is then simply a

one-electron w.f.



For helium, Z = 2, leading to a single

electron–electron interaction term. This is

enough to turn the proper solution of the

Schrödinger equation into a true many-body

w.f.

Setting aside that complication for the

moment, let’s assume that the spatial portion

of the w.f. can be approximated as the

product of two one-electron w.f.’s:

ψ(r1, r2) = ψnlm(r1)ψn′l′m′(r2), where the

Bohr radius is half as large as for hydrogen

and E = 4(En + En′), En = −13.6
n2 eV.

Specifically, the ground state is ψ0(r1, r2) =

ψ100(r1)ψ100(r2) = 8
πa3e

−2(r1+r2)/a and

E0 = −109 eV.

Because ψ0 is a symmetric function, the spin

w.f. must be antisymmetric. Thus, the

ground state of He is a singlet configuration,

wherein the spins are aligned oppositely.



The actual ground state is indeed a singlet, but

the energy is only -79 eV. Such poor

agreement is expected since we neglected the

positive (repulsive) contribution of

electron–electron interaction.

The excited states of He consist of one

electron in the hydrogenic ground state and

the other in an excited state: ψnlmψ100. The

spatial portion of this w.f. can be constructed

either symmetrically or antisymmetrically

(ψaψb ± ψbψa), leading to the possibility of

either antisymmetric or symmetric spin

portions, respectively, known as parahelium

and orthohelium.

If you try to put both electrons in excited

states, one immediately drops into the ground

state, releasing enough energy to knock the

other electron into the continuum and

yielding a He ion (He+). This process is

known as an Auger transition.



Figure 5.2 - Energy level diagram for He (relative to

He+, -54.4 eV). Note that parahelium (antisymmetric

spin) energies are uniformly higher than orthohelium

counterparts.



For heavier atoms we proceed in the same way.

To a first approximation, the w.f. are treated

by placing electrons in one-electron,

hydrogen-like states (nlm) called orbitals.

Since electrons are fermions, only two of

them (having opposite spins, the singlet

configuration) can occupy each orbital. There

are n2 hydrogenic w.f.’s for a given n, all with

same e.v..

These would correspond to the rows in the

periodic table, except that including the

electron–electron repulsion raises the energy

of large l states more than small l states.

This effect arises because the ‘centrifugal

term’ in the radial equation pushes the

wavefunction out and is larger for large l.

Furthermore, in the outer regions, the charge

of the nucleus becomes increasing screened by

the inner electrons. In practice, it raises the

energy of, e.g., the nlm = 3 2m above that of

4 0m and modifies the positions thereafter.



Note that the states with l = 0,1,2,3, ... are

usually referred to by the letters s, p, d, f, ....

Thus a nl = 3 2 state is often referred to as a

3d state.

Study of the (empirically-derived) periodic table

has led to additional rules for the energy

ordering of states with varying total orbital

angular momentum (L), and also varying

values of total spin (S) and total orbital plus

spin angular momentum (J). See text for

details.



5.3 Solids

In the solid state, some of the loosely-bound

electrons in each atom become detached,

roam ‘freely’ amongst the atoms, and are

known as conduction electrons. The

remaining electrons on each atom form the

‘core’, and are changed only slightly by the

overlapping potentials of the other atoms.

Let us consider two simple models for the

conduction electron e.s.



Sommerfeld’s free electron gas

Assume that the conduction electrons are not

subject to any potential variations at all,

except that they are confined absolutely

within a ‘large’ rectangular solid of

dimensions lx, ly, lz:

V (x, y, z) =

{
0 if(0 < x < lx,0 < y < ly,0 < z < lz)
∞ otherwise

As before, the Schrödinger equation can be

solved using separation of variables, yielding

ψ(k) =
√

8
Ω sin kxx sin kyy sin kzz, where

E(k) = ~2k2

2m , ki ≡ niπ
li

, ni = 1,2,3, . . . , and

Ω ≡ lxlylz.



Figure 5.3 - Free electron gas. Each intersection

represents one allowed energy. Shaded block is volume

occupied by one state.



Suppose this solid contains N atoms [a number

on the order of Avogadro’s number, ∼ 1027

atoms/m3], each one of which contributes

one or more electrons to the ‘Fermi sea’. If

the solid is in its ground state and the

electrons were bosons or distinguishable

particles, they would all occupy the lowest

energy state, 111.

But electrons are actually fermions, so only two

electrons (with opposite spins) can occupy

each of the states we have identified. In the

ground state, they will occupy Ne/2 of the

lowest energy states, filling a sphere in

k-space of radius kF = (3ρπ2)1/3, where kF is

the Fermi vector, ρ = Ne
Ω , and Ne is the total

number of ‘free’ electrons in the solid.



Figure 5.4 - One octant of a spherical shell in k-space.

The boundary surface (in k-space) between the

occupied and unoccupied states is called the

Fermi surface, while the energy of the highest

occupied state is called the Fermi energy,

EF =
~2k2

F
2m . Since we know the properties of

the e.s, we can calculate the total energy of

the conduction electrons: Etotal =
~2k5

FΩ

10π2m
.



If we include the volume-dependence of the

Fermi vector, Etotal ∝ Ω−2/3, and increases if

the volume decreases. This effect, which

arises completely from the

quantum-mechanical requirement that the

wavefunctions be antisymmetric under

exchange, acts like a pressure: P = 2
3
Etotal

Ω .

Note also that we have included neither the

electron–atom core nor the electron–electron

interactions at this point.



Bloch model of a periodic solid

Consider a one-dimensional, periodic solid.

Bloch’s theorem says that

V (x+ a) = V (x) ⇒ ψ(x+ a) = eiKaψ(x).

If we use periodic boundary conditions on the

entire macroscopic solid containing N

potentials, ψ(x)⇒ ψ(x+Na) = eiNKaψ(x), so

that K = 2πn
Na , (n = 0,±1,±2, . . . ).

Thus we have a prescription for obtaining the

e.f. everywhere once we have solved for it

within a single cell.

To see more, we must choose a specific

potential. Consider what is arguably the

simplest periodic potential: a one-dimensional

evenly-spaced array of Dirac δ-functions,

V (x) = −α∑jδ(x− ja), called a Dirac comb.



Figure 5.5 - The ‘Dirac comb’.

In the regions between the δ-functions, the

e.s.’s have E = ~2k2

2m and functional forms like

sin (kx). Specifically, for the cells to the left

and right of the δ-function at the origin, the

Bloch form requires that

ψ(x) = A sin (kx) +B cos (kx), (0 < x < a) and

ψ(x) = e−iKa[A sin (kx)+B cos (kx)], (−a < x < 0).

Since the δ-functions are non-zero only at a

point, the resulting w.f.’s are continuous

through them but the derivatives are

discontinuous, satisfying a boundary condition

obtained by integrating the differential

equation once (see Chap. 2). Thus

A sin (ka) = [eiKa − cos (ka)]B and

cos (Ka) = cos (ka)− mα
~2k

sin (ka).



The allowed E and k are determined by the last

equation. Note that the obvious requirement

that | cos (Ka)| ≤ 1 leads to the existence of

values of k for which that equation cannot be

satisfied. This can be seen by graphing the

rhs of the equation against z = ka, letting
mαa
~2 = 10.

Figure 5.6 - A graph of the rhs of the equation for

cos (Ka). Solutions exist only for | cos (Ka)| ≤ 1.



Thus there are regions of the energy spectrum

for which there are no solutions, referred to

as gaps in the density of states. These gaps

are separated by nearly continuous bands of

allowed states, each band containing N

states. The division of the energy spectrum

into bands of allowed states separated by

gaps is a general characteristic of periodic

potentials, and is referred to as the band

structure.

Figure 5.7 - The allowed positive energies for a

periodic potential.



Once the band structure has been determined,

in the ground state the electrons occupy the

lowest energy Ne/2 levels. If, as a result, the

topmost band containing electrons is only

partially filled, a metal or conductor is the

consequence. If, on the other hand, the

topmost band is completely filled, so that

conduction results only from those electrons

excited into the next band, an insulator or

semiconductor results, depending on the size

of the gap.



5.4 Quantum Statistical
Mechanics

So far, we have been dealing with the ground

state of systems. Statistical mechanics deals

with the occupation of states when a system

is excited. The fundamental assumption of

statistical mechanics is that, in thermal

equilibium, every distinct state with the same

total energy is occupied with equal probability.

Temperature is simply a measure of the total

energy of a system in thermal equilibium.

The only change from classical statistical

mechanics occasioned by quantum mechanics

has to do with how we count distinct states,

which depends on whether the particles

involved are distinguishable, identical

fermions, or identical bosons.



Three non-interacting particles

Suppose we have three non-interacting

particles, all of mass m, occupying a

one-dimensional square well:

Etotal = π2~2

2ma2(n2
A + n2

B + n2
C). Suppose further

than the total energy of this system

corresponds to n2
A + n2

B + n2
C = 243.

There are 13 distinct combinations of 3 positive

integers such that the sum of their squares is

243: (9,9,9), (3,3,15), (3,15,3), (15,3,3),

(11,11,1), (11,1,11), (1,11,11),

(5,7,13), (5,13,7), (13,5,7),

(7,5,13), (7,13,5), (13,7,5).

Distinguishable particles: each of the above 13

represents a distinct quantum state, and each

would occur with equal probability. For

example, particle A has a 2/13 chance of

being in 3. ∴ P1 = P9 = P15 = 1/13 and

P3 = P5 = P7 = P11 = P13 = 2/13, the

remainder being zero. Note that
∑
Pi = 1.



Identical fermions: leaving spin aside for

simplicity, the antisymmetrization requirement

eliminates all states in which two or more

particles occupy the same level (i.e., value of

n). This eliminates the first 7 states, leaving

6 equally occupied states, or

P5 = P7 = P13 = 1/3, the remainder being

zero.

Identical bosons: the symmetrization

requirement allows one state with each

configuration, of which there are 4:

P9 = 1/4;P3 = P11 = (1/4)× (2/3);

P1 = P15 = (1/4)× (1/3);

P5 = P7 = P13 = (1/4)× (1/3); the remainder

being zero.

So, the results vary dramatically depending on

the fundamental nature of the particles.



General case

Consider an arbitrary potential, for which the

one-particle energies are E1, E2, E3, . . . with

degeneracies d1, d2, d3, . . . . If we put N

particles into this potential, the number of

distinct states corresponding the

configuration (N1, N2, N3, . . . ) is Q, where we

expect Q to be a strong function of whether

the particles are distinguishable, identical

fermions, or identical bosons. After a detailed

consideration of the numbers of particles and

states, the following formulae for Q result.

Distinguishable particles:

Q(N1, N2, N3, . . . ) = N !
∞∏

n=1

dNnn
Nn!

.

Identical fermions:

Q(N1, N2, N3, . . . ) =
∞∏

n=1

dn!

Nn!(dn −Nn)!
.



Identical bosons:

Q(N1, N2, N3, . . . ) =
∞∏

n=1

(Nn + dn − 1)!

Nn!(dn − 1)!
.

—>—

In thermal equilibrium, the most probable
configuration is that one which can be
attained in the largest number of different
ways. We want to find this subject to two
constraints:

∞∑

n=1

Nn = N and
∞∑

n=1

NnEn = E.

This is best handled using Lagrange multipliers.
It is also useful to maximize ln (Q) rather
than Q, which turns the products of factorials
into sums. Let

G ≡ ln (Q)+α


N −

∞∑

n=1

Nn


+β


E −

∞∑

n=1

NnEn


 ,

where α and β are the Lagrange multipliers.
We now seek the values of Nn which satisfy
∂G
∂Nn

= 0, ∂G
∂α = 0, and ∂G

∂β = 0.



The most probable occupation numbers are:

Distinguishable particles: Nn = dne−(α+βEn).

Identical fermions: Nn = dn
e(α+βEn)+1

.

Identical bosons: Nn = dn
e(α+βEn)−1

.

Physical significance of α and β

Insight into the physical meaning of α and β

can be gained by substituting one of the

above equations for Nn into the sums which

yield N and E, but that requires assuming a

specific model for V . Let’s use a simple V , a

three-dimensional infinite square well:

For distinguishable particles,

e−α =
N

V

(
2πβ~2

m

)3/2

and E =
3N

2β
.

The second equation leads us to define T by

β ≡ 1
kBT

. α is customarily expressed in terms

of a chemical potential: µ(T ) ≡ −αkBT .



With these definitions, which turn out to be
sensible and useful in the general case, we
can now write expressions for the most
probable number of particles in a particular
one-particle state with energy ε as:

Distinguishable particles (Maxwell-Boltzmann):
n(ε) = e−(ε−µ)/kBT .

Identical fermions (Fermi-Dirac):
n(ε) = 1

e(ε−µ)/kBT+1
.

Identical bosons (Bose-Einstein):
n(ε) = 1

e(ε−µ)/kBT−1
.

These are the familiar occupation probabilities.

Figure 5.8 - The Fermi-Dirac distribution for T = 0

and for T somewhat above zero.



Finally, it is possible to work out somewhat

more fully the relationships which lead to T

and µ:

Distinguishable particles: E = 3
2NkBT and

µ(T ) = kBT

[
ln
(
N

V

)
+

3

2
ln

(
2π~2

mkBT

)]
.

For the other cases, the integrals cannot be

evaluated in terms of elementary functions.

Identical particles:

N =
V

2π2

∫ ∞
0
dk

k2

e[(~2k2/2m)−µ]/kBT ± 1

E =
V

2π2

~2

2m

∫ ∞
0
dk

k4

e[(~2k2/2m)−µ]/kBT ± 1
,

where, as usual, the upper sign is for fermions

and the lower for bosons.



Blackbody spectrum

Photons are identical bosons with spin 1, but

they are a very special case because they are

massless. Thus they are intrinsically

relativistic. We must therefore accept as

assertions four of their properties which do

not really belong in nonrelativistic quantum

mechanics:

(1) The energy of a photon is related to its

frequency by the Planck formula: E = ~ω.

(2) The wavenumber k is related to the

frequency by k = 2π/λ = ω/c, where c is the

speed of light.

(3) Only two spin states can occur; i.e., m

can be ±1, but never 0.

(4) The number of photons is not a

conserved quantity; the number (per unit

volume) increase as T increases.



In view of item (4), we cannot constrain the

number of photons. Setting α = 0, the most

probable number of photons is

Nω =
dk

e~ω/kBT − 1
.

For free photons in a box of volume V ,

dk =
V

π2c3
ω2dω,

where we have multiplied by 2 for spin.

This leads to the energy density

ρ(ω) =
Nω~ω
V

=
~ω3

π2c3(e~ω/kBT − 1)
,

which is Planck’s blackbody spectrum, one of

the early successes of quantum physics.



Figure 5.9 - Planck’s blackbody spectrum.


