
8. WKB Approximation

The WKB approximation, named after

Wentzel, Kramers, and Brillouin, is a method

for obtaining an approximate solution to a

time-independent one-dimensional differential

equation, in this case the Schrödinger

equation. Its principal applications for us will

be in calculating bound-state energies and

tunneling rates through potential barriers.

Note that both examples involve what is called

the ‘classical turning point’, the point at

which the potential energy V is approximately

equal to the total energy E. This is the point

at which the kinetic energy equals zero, and

marks the boundaries between regions where

a classical particle is allowed and regions

where it is not.



If E > V , a classical particle has a non-zero

kinetic energy and is allowed to move freely.

If V were a constant, the solution to the

one-dimensional Schrödinger equation would

be ψ(x) = Ae±ikx, where k ≡
√

2m(E − V )/~.

This wf is oscillatory with constant

wavelength λ = 2π/k and constant amplitude

A.

If V is not a constant, but instead varies very

slowly on a distance scale of λ, then it is

reasonable to suppose that ψ remains

practically sinusoidal, except that the

wavelength and amplitude change slowly with

x (on a scale of λ).

Analogous comments can be made for the

regions where E < V , wherein the solution to

the Schrödinger equation for constant V is

ψ(x) = Ae±κx, κ ≡
√

2m(V − E)/~. In these

regions, a classical particle would not be

allowed, but a quantum particle is said to

‘tunnel’.



The WKB method involves implementing this

basic point-of-view within the two kinds of

regions. In-between these two types of

regions lie the ‘classical turning points’ at

which the two wf’s must be properly

matched, leading to boundary conditions

between the regions.

Figure 8.1 - Classically, the particle would be confined

to the region where E ≥ V (x).



E > V : a ‘classically allowed’ region

The Schrödinger equation,

− ~2

2m
d2ψ
dx2 + V (x)ψ = Eψ, can be rewritten

without approximation as d2ψ
dx2 = −p2

~2ψ, where

p(x) ≡
√

2m[E − V (x)] is the classical formula

for momentum. If E > V , then p(x) is real

and, with no loss of generality, one can write

ψ(x) = A(x)eiφ(x) where A and φ are both

real functions of x.

Substituting this expression for ψ into the

rewritten Schrödinger equation, we find

A′′+ 2iA′φ′+ iAφ′′ −A(φ′)2 = −p2

~2A. The real

and imaginary parts of this equation must

both hold. After some manipulation, these

two eqs. become A′′ = A[(φ′)2 − p2

~2] and

(A2φ′)′ = 0, which are together equivalent to

the original Schrödinger equation.

The second equation is easily solved, leading to

A = C√
φ′

where C is a (real) constant.



The first equation cannot be solved in general,

leading to the principal approximation of the

WKB method:

assume that A varies sufficiently slowly that

A′′/A� both (φ′)2 and p2/~2.

Then we can set the factor in brackets equal to

zero, or dφ
dx = ±p~ ⇒ φ(x) = ±1

~
∫
dx p(x).

Putting the solutions to both equations

together, ψ(x) ∼= C√
p(x)

e±
i
~
∫
dx p(x), where C is

now complex to absorb a constant of

integration.

Note that ψ2 ∼= |C|2
p(x), which implies that the

probability of finding a particle is smaller in

those regions where it is ‘moving rapidly’,

classically speaking.



This result can now be applied to the following
problem: suppose that we start with the
infinite square well, in which V is such that
the walls rise vertically at, say, x = 0 and a.
Let’s vary that potential, however, by allowing
V (x) to vary moderately in the bottom of the
infinite square well, a ‘lumpy’ potential.

Figure 8.2 - An infinite ’square’ well with a ’bumpy’

bottom.

As before, the vertical walls require that the wf
vanish at x = 0 and a. But, the variation of
V (x) in-between must be accounted for.
Using the above approach, we find that the
conditions on the constant of motion, k,
appropriate to the square well, are replaced by∫ a
0 dx p(x) = nπ~.

Note that this result reduces to the earlier
result for the infinite square well when V (x) is
constant.



E < V : a tunneling region

Keeping the same definition of p(x), it is now

not real but imaginary. A similar set of

manipulations leads to the solution:

ψ(x) ∼= C√
|p(x)|e

±1
~
∫
dx |p(x)|.

This equation allows us to treat the case of

tunneling through a barrier by an otherwise

free electron, for situations where the barrier

potential V (x) > E is abrupt and finite but

not constant. It is shown in the text that the

transmission coefficient is given by: T ∼= e−2γ,

where γ ≡ 1
~
∫ a
0 dx |p(x)|.



Figure 8.3 - Scattering from a rectangular barrier with

a ’bumpy’ top.

Figure 8.4 - Qualitative structure of the wavefunction

for scattering from a high, broad barrier.



The turning points

At the classical turning points, the vanishing of
the classical particle momentum prevents us
from making the principal assumption of the
WKB method; i.e., that A′′/A is small on the
scales of (φ′)2 and p2/~2. This breakdown is
obvious from the forms of the solutions: ψ
becomes infinite as p(x)→ 0. This difficulty
can be handled in the following way.

Clearly, we have no trouble with the case in
which the potential rises abruptly (i.e., a step
function), wherein the region is vanishingly
small in which p→ 0. It is reasonable to hope
that we can handle the general case if we
approximate the variation of the potential
with a linear dependence on x.

Figure 8.7 - The right-

hand turning point.



Let the ‘right-hand’ turning point occur at

x = 0. In the vicinity of x = 0, let

V (x) ∼= E + V ′(0)x. Substituting this into the

Schrödinger equation, we get d2ψ
dx2 = α3xψ,

where α ≡ [2m
~2 V

′(0)]
1
3. If we let z ≡ αx, then

d2ψ
dz2 = zψ. This is Airy’s equation, which is

‘well known’, having solutions called the Airy

functions.

The Airy functions, which are described in the

text, are denoted by Ai(z) and Bi(z). These

functions are both sinusoidal functions of

(−z)
3
2 for z � 0. For z � 0, Ai(z) ∝ e−2

3z
3
2 and

Bi(z) ∝ e+2
3z

3
2 . Thus they are well suited to

match a sinusoidal function (in z) on the left

with an exponential function on the right (or

vice versa, if necessary, with a suitable change

of variables).



Figure 8.8 - Airy functions, of both types.



In order to use the Airy functions in the WKB

solution to a problem, it is necessary to divide

the region of the turning point into three

regions: the patching region in which the Airy

function is ‘a good solution’; a region on each

side of that in which the asymptotic forms of

the Airy function overlap with the WKB

solutions (‘far’ from the turning point).

Figure 8.9 - Patching region and the two overlap zones.



Specifically, near the turning point we can write

p(x) ∼=
√

2m[E − E − V ′(0)x] = ~α
3
2
√−x.

Thus, in overlap region 2,
∫ x
0 dx

′ |p(x′)| ∼= 2
3~(αx)

3
2 and the WKB wf can

be written ψ(x) ∼= D
√
~α

3
4x

1
4
e−

2
3(αx)

3
2 .

Using the asymptotic forms for z � 0, we can

write the Airy functions in this same region as

ψp(x) ∼= a

2
√
π(ax)

1
4
e−

2
3(ax)

3
2 + b

√
π(ax)

1
4
e+2

3(ax)
3
2 .

Equating these two expressions leads to

a =
√

4π
α~D and b = 0.



Overlap region 1 is treated in a similar fashion,

except that b = 0 and we use the asymptotic

form of the Airy function Ai for z � 0.

These expressions lead to expressing the WKB

solutions to the ‘far’ left using the same

overall constant multiplier as on the ‘far’

right. Moving the turning point to x2,

ψ(x) ∼=





2D√
p(x)

sin [1
~
∫ x2
x dx′ p(x′) + π

4], if x < x2;

D√
|p(x)|e

−1
~
∫ x
x2
dx′ |p(x′)|

, if x > x2.

Having joined the two WKB solutions

together correctly, one need refer no longer

to the Airy connection formulas.


