
9. Time-dependent Perturbation
Theory

Until this point, we have confined our attention
to those situations in which the potential,
and, by implication, the Hamiltonian, is not
an explicit function of time. This allowed us
to solve the time-dependent Schrödinger
equation by separation of variables, i.e.,
Ψ(r, t) = ψ(r)e−iEt/~.

We now want to treat transitions between
quantum states, which are driven by a
time-dependent Hamiltonian. This moves us
from the realm of statics to dynamics.

9.1 Two-level systems

Consider a time-independent H0 for which two
e.s. form a complete set: H0|a〉 = Ea|a〉 and
H0|b〉 = Eb|b〉, 3 〈a|b〉 = δab.

Any state can be expressed as a linear
combination of these e.s.:

Ψ(t) = ca|a〉e−iEat/~ + cb|b〉e−iEbt/~, where ca

and cb are constants and |ca|2 + |cb|2 = 1.



Suppose we add a time-dependent H ′(t). The
form of the general Ψ is still the same, except
that ca and cb are now explicit functions of t.
Determining these ca(t) and cb(t) is somewhat
more complicated than it was when the
perturbing term was time-independent.

Substituting H = H0 +H ′(t) into HΨ = i~∂Ψ
∂t

and eliminating equivalent terms, we get
caH ′|a〉e−iEat/~ + cbH

′|b〉e−iEbt/~
= i~ċa|a〉e−iEat/~ + i~ċb|b〉e−iEbt/~.

Operate on this equation with 〈a| to obtain:

ċa = − i~[caH ′aa + cbH
′
abe
−i(Eb−Ea)t/~], where

H ′ij ≡ 〈i|H ′|j〉 and H ′ij = (H ′ji)
∗ due to

Hermiticity.

Similarly, ċb = − i~[cbH
′
bb + caH ′bae

+i(Eb−Ea)t/~].

It is often the case that the diagonal matrix
elements of H ′ vanish naturally, or can be
handled in other ways. If H ′aa = 0 = H ′bb, then

ċa = − i~H ′abe−iω0tcb and ċb = − i~H ′bae+iω0tca,

where ω0 ≡ Eb−Ea
~ and Eb > Ea ⇒ ω0 > 0.



Small perturbations

So far, the general equation for ċa and ċb have

involved no approximations. Let us now

assume that H ′ is ‘small’ enough that we can

solve Schrödinger’s equation by a process of

successive approximations.

Suppose that the particle starts out in state a

(ca(0) = 1, cb(0) = 0) and that the perturbing

H ′ has no diagonal elements.

To zeroth order, the particle remains in that

state: c(0)
a (t) = 1, c(0)

b (t) = 0.

To first order, insert the zeroth-order

expressions on the right side of the equations

for ċa and ċb:

ċa = 0⇒ ca(t) = 1

ċb = − i~H ′bae+iω0t

⇒ cb(t) = − i~
∫ t
0 dt
′H ′ba(t′)e+iω0t

′
.

Note that each expression contains both

zeroth- and first-order terms.



A similar substitution yields the expression for
ca to second order:
ca(t) = 1

− 1

~2

∫ t
0
dt′H ′ab(t

′)e−iω0t
′
[∫ t′

0
dt′′H ′ba(t′′)e+iω0t

′′
]
.

The second-order expression for cb is
unchanged from first order.

If we continued this process, we would find that
ca is modified with every even order and cb
with every odd.

Small sinusoidal perturbations

Suppose further that the perturbation is
sinusoidal: H ′(r, t) = V (r) cos (ωt). Then,
H ′ab = Vab cos (ωt), where Vab ≡ 〈a|V |b〉 and the
diagonal matrix elements are assumed to
vanish.

To first order, cb(t)
∼= − i~Vba

∫ t
0 dt
′ cos (ωt′)eiω0t

′

= −iVba2~
∫ t
0 dt
′[ei(ω0+ω)t′ + ei(ω0−ω)t′]

= −Vba2~ [e
i(ω0+ω)t−1
ω0+ω + ei(ω0−ω)t−1

ω0−ω ].



This result can be simplified by letting the

driving frequency ω be close to the natural

transition frequency ω0,

i.e., |ω0 − ω| � (ω0 + ω).

Then the second term in cb(t) is much larger

than the first, so that cb(t) can be rewritten

as cb(t)
∼= −iVba~

sin [(ω0−ω)t/2]
ω0−ω ei(ω0−ω)t/2.

One can now find the probability that a particle

which started out in |a〉 will be found in |b〉 at

t, called the transition probability:

Pa→b(t) ≡ |cb(t)|2 ∼= |Vba|2
~2

sin2 [(ω0−ω)t/2]
(ω0−ω)2 .

Figure 9.1 - Transition probability as a function of

time for a sinusoidal perturbation.



The most surprising aspect of this result is that

Pa→b oscillates between zero and a maximum

value (which depends on Vab). In other words,

the probability of a transition drops to zero

periodically. This is not an artifact of

perturbation theory.

The strong effect of ω ≈ ω0 on Pa→b(t) is easily

illustrated by plotting Pa→b as a function of ω

for fixed t, yielding a function which falls off

rapidly for ω 6= ω0.

Figure 9.2 - Transition probability as a function of

driving frequency for a sinusoidal perturbation.



9.2 Emission and absorption of
radiation

An electromagnetic wave consists of transverse

and mutually perpendicular electric and

magnetic fields which oscillate with t, of

which principally E interacts with an atom.

Figure 9.3 - An electromagetic wave.

If the wavelength is long compared with the

size of an atom (which is the case for all light

less energetic than x rays), we can ignore the

spatial variation of the field.



It is therefore reasonable to approximate the

interaction between an atom and a light wave

with the interaction between an electron and

an oscillating spatially-uniform electric field:

H ′ = −q ∫ dr · E = −qzE0 cos (ωt).

∴ H ′ba = −℘E0 cos (ωt), where ℘ ≡ q〈b|z|a〉, or,

simply, Vba = −℘E0.

Putting this all together, we get an expression

for ‘photoabsorption’:

Pa→b(t) ∼=
(
|℘|E0
~

)2
sin2 [(ω0−ω)t/2]

(ω0−ω)2 .

In this process, the atom absorbs energy

Eb − Ea = ~ω0 from the electromagnetic field

by the promotion of an electron from state a

to b. We refer to this as ‘absorbing a

photon’, even though we are treating the field

classically and the concept of photon properly

belongs to quantum electrodynamics.



Of course, there is a companion process in

which the electron undergoes a transition

from state b to state a, giving up energy

Eb − Ea = ~ω0 in the process.

We can calculate the probability for this

process by assuming that ca(0) = 0,

cb(0) = 1, and following the above derivation,

yielding exactly the above result for Pb→a(t).

In other words, the absorption and emission

of a photon have exactly the same probability,

a remarkable result.

If E0 is due to applied light, then we call the

resulting emission ‘stimulated emission’.

Together with ‘population inversion’ to

augment the numbers of electrons in the

excited states, this leads to the possibility of

light amplification and lasing.



Even in the absence of applied light, however,

quantum statistics requires that E0 > 0,

leading to so-called ‘spontaneous’ emission.

Figure 9.4 - Three ways in which light interacts with

atoms: (a) absorption; (b) stimulated emission; (c)

spontaneous emission.



Incoherent perturbations

Since the energy density in an electromagnetic

wave is given by u = ε0
2E

2
0, the transition

probabilities we have calculated are

proportional to the energy density of the

incoming radiation. Suppose we now consider

a situation in which the incoming radiation is

electromagnetic waves of many frequencies.

It is best then to replace u with the energy

density in the range dω (i.e., u→ dωρ(ω)) and

integrate over the frequency spectrum:

Pb→a(t) ∼= 2|℘|2
ε0~2

∫ ∞
0

dωρ(ω)

{
sin2 [(ω0 − ω)t/2]

(ω0 − ω)2

}
.

Note that this expression assumes that the

waves at different frequencies are

independent, so that we can add transition

probabilities. If, instead, the waves were

phase correlated (coherent), we would need to

add amplitudes (cb(t)) instead of probabilities

(|cb(t)|2), resulting in additional cross terms.



Since usually the term in braces is sharply

peaked about ω ≈ ω0 while ρ(ω) is slowly

varying, we can move ρ outside the integral:

Pb→a(t) ∼= 2|℘|2
ε0~2

ρ(ω0)
∫ ∞

0
dω

sin2 [(ω0 − ω)t/2]

(ω0 − ω)2
.

The integral is handled by extending the

range to x ≡ (ω0 − ω)t/2 = ±∞ (since the

integrand is ‘very small’ out there anyway)

and using the definite integral:

∫ ∞
−∞

dx
sin2 x

x2
= π, so that Pb→a(t) ∼= π|℘|2

ε0~2
ρ(ω0)t.

Notice that the transition probability is no

longer oscillating with time, but is instead

increasing monotonically. Thus we can think

of a ‘transition rate’ (R ≡ dP
dt ) for the

emission of light: Rb→a = π
ε0~2|℘|2ρ(ω0).



So far we have been assuming that the
perturbing wave is traveling in the +y
direction with polarization in the z direction.
But in fact we are interested in situations
where the radiation comes in from all
directions, and is polarized in all directions
(allowed by its propagation direction). In
order to take care of this variation, we must
replace |℘|2 above with the average of |℘ · n̂|2,
where ℘ ≡ q〈b|r|a〉 and n̂ is the direction of
polarization. This can be done choosing the z
axis for the direction of propagation, so that
n̂ is in the xy plane and the vector ℘ is in the
yz plane:

Figure 9.5 - Axes for averaging of |℘ · n̂|2.

Averaging over θ and φ leads to

Rb→a = π
ε0~2

|℘|2
3 ρ(ω0).



9.3 Spontaneous emission

In order to ascertain the rate for spontaneous

emission, let’s follow Einstein’s argument

regarding the Planck blackbody radiation

formula.

Consider a box containing Na atoms in the a

state and Nb atoms in the b state. Let

Bbaρ(ω0) and Babρ(ω0) be the transition rates

for stimulated emission and absorption into

the radiation bath, and A be the transition

rate for ‘spontaneous’ emission. The net rate

of change of Nb can then be written as
dNb
dt = −NbA−NbBbaρ(ω0) +NaBabρ(ω0).

Suppose that these atoms are in thermal

equilibrium with the ambient field. Then,
dNb
dt = 0, so that one can solve the rhs of that

equation to obtain ρ(ω0) = A
(Na/Nb)Bab−Bba.



But, in thermal equilibrium, we know that the
relative occupancy of these states is
determined by the Boltzmann factor,
Na
Nb

= e~ω0/kBT , so that ρ(ω0) = A

e~ω0/kBTBab−Bba
.

On the other hand, according to Planck’s
blackbody radiation formula, the energy
density of thermal radiation is given by
ρ(ω) = ~

π2c3
ω3

e~ω/kBT−1
.

Comparing these two expressions for ρ, we
conclude that Bab = Bba and A = ω3~

π2c3
Bba.

The first of these equations tells us that the
rates of absorption and stimulated emission
are equal, which we had already found out.

The second equation tells us the rate for
spontaneous emission in terms of that for
stimulated emission, which we already know.

Thus, A = ω3|℘|2
3πε0~c3

.

The calculation of spontaneous emission rates
has been reduced to the evaluation of matrix
elements of the form 〈b|r|a〉.



Given the rate for spontaneous emission, we
can determine the rate at which atoms in an
excited state will decay even in the absence of
fields: dNb = −ANbdt⇒ Nb(t) = Nb(0)e−t/τ ,
where τ = 1/A.

If there are several lower energy states to which
an excited state can decay, then the lifetimes
add in reciprocal: τ = 1

A1+A2+A3+···.

Finally, it should be noted that conditions can
be derived for which the transition
rate/photon emission vanishes. These are
known as ‘selection rules’ for electric-dipole
transitions (the case we have been
considering).

For the usual situation, in which the atom is
spherically symmetric, manipulation shows
that electric-dipole radiation cannot occur
unless: ∆m = 0,±1; ∆l = ±1.

The selection rules for these transitions can be
attributed to conservation of angular
momentum: the atom must give up whatever
angular momentum the photon takes away.



Figure 9.6 - Allowed decays for the first four Bohr

levels in hydrogen.

Evidently, not all transitions to lower-energy

states can proceed by spontaneous emission.

Some are forbidden by the selection rules.

Note that the 2S state (ψ200) is ‘stuck’. It

cannot decay because there is no

lower-energy state with l = 1. It is called a

metastable state, and its lifetime is indeed

much longer than that of, for example, the

2P states (ψ211, ψ210, ψ21−1). Metastable

states do eventually decay, either by collisions

or by what are (misleadingly) called forbidden

transitions, or by multiphoton emission.


