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0 Course information

Aim: to introduce 1st year physics graduate students to the theory of quantum
fields.

Topics: canonical quantisation of scalar and vector fields; the path integral
formalisms for scalar fields; Gaussian path integrals; the diagrammatic represen-
tation of Green’s functions in real scalar field theory; to understand how field
theory can be used to calculate physical processes including scattering.

3



Syllabus

• Relativistic wave equations (Ryder Ch 2, G & R Ch 4.1, 6.2). Relativistic
notation; Klein-Gordon equation. Maxwell equations.

• Lagrangian formulation (Ryder Ch 3, G & R Ch 2). Lagragian particle
mechanics; Euler-Lagrange for real scalar field; Noether’s theorem for scalar
fields. Electromagnetic field.

• Canonical quantisation (Ryder Ch 4, G & R Ch 4/7). Canonical com-
mutation relations for real scalar field; Fock space; Number, energy and
momentum operators. EM field in Lorentz gauge.

• Path integrals (Ryder Ch 5/6, G & R Ch 11/12). Path integrals in quantum
mechanics; Functionals; Path integral quantisation of scalar field; Gaussian
integration; Free particle Green’s functions ; Vacuum-vacuum transition
function Z[J].

• Interacting fields (Ryder Ch 5/6, G & R Ch 8). S-matrix and transition
amplitudes; Time evolution operator; Wick’s theorem; Matrix elements.

Teaching methods

There will be 2 lectures a week throughout the term. Problem sheets will be
given every two weeks.

Assessment

MSc students Problem sheets will count for 40% of the total mark for the
course, the remaining 60% will come from the 1.5 hour exam at the end of
the year, which will have a choice of two questions from three.

DPhil students Problem sheets will count for 100% of the total mark.
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Reading list

* Quantum Field Theory, L. Ryder (C.U.P., Cambridge, 1984).

* Field Quantization, W. Greiner and J. Reinhardt (Springer, Berlin, 1996),

An introduction to quantum field theory, Michael E. Peskin, Daniel V.
Schroeder (Addison-Wesley, Reading, Mass; 1995).

Quantum field theory: a modern introduction, Michio Kaku (O.U.P., Ox-
ford, 1993)

Quantum Field Theory, F. Mandl and G. Shaw (Wiley, Chichester, 1984).

Fields, W. Siegel (http://insti.physics.sunysb.edu/~siegel/plan.html).

There are quite a few errors in Peskin and Schroeder which are supposed to be
corrected in the next printing of the book. Meanwhile, a list can be found at

http://www.slac.stanford.edu/~mpeskin/QFT.html

The other books are complementary in some way. Kaku is very complete
but rather rushed. Mandl and Shaw is pedagogical but adopts different Fourier
transform and normalisation conventions which can confuse the unwary. Siegel’s
PDF lecture notes are the most complete exposition I have seen. They are very
advanced and will cost you a lot to print at over 800 pages.

Prerequisites

The course assumes that you have already encountered

• Quantum Mechanics (Schrödinger equations, free particle solution, har-
monic oscillator).

• Special Relativity (Lorentz transformations, space-time interval, Lorentz
invariance).

• Electromagnetism (Maxwell’s equations in free space).

It will help to have come across the following subjects, mostly covered in the
Sussex undergraduate course Theoretical Physics II, as only a brief review is
given here.

• Lagrangian formulation of classical mechanics (e.g. Classical mechanics,
T.W.B. Kibble and F.H. Berkshire, London: Longman, 1996).

• 4-vector notation in Special Relativity (e.g. Chapter 2 in General relativity
and cosmology, T.L. Chow, Winnipeg: Wuerz, 1994).
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• Covariant formulation of Maxwell’s equations.

• Natural Units (Mandl and Shaw, Section 6.1).

Course Lecturer

Mark Hindmarsh, CPES, Arundel 213.
Telephone: 8934
E-mail: m.b.hindmarsh@sussex.ac.uk
Course web: http://www.pact.cpes.susx.ac.uk/~markh/RQF1/
Office hour: Tuesday 2–3pm, or by arrangement (email is best).
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1 Preliminaries

2 Relativistic wave equations

2.1 Special Relativity in relativistic notation

We start by quoting a formulation of the Principle of Special Relativity:

Fundamental physical laws are the same for all observers moving with
constant velocity relative to one another.

Special Relativity is a rather peculiar theory as it appears to be a theory about
other theories. However, when applied to dynamics it does have testable conse-
quences, which have of course corroborated the theory to great accuracy. It is
in fact true in only a restricted domain, where gravitational fields are weak and
can be neglected. Although it may not seem like it, the gravitational field at
the surface of the earth it sufficiently weak to be neglected for most purposes in
relativity.

2.1.1 Lorentz transformations and Space-time interval

Suppose a frame of reference F ′ is moving at velocity v in the x direction relative
to another F . Special Relativity tells us that coordinates measured in F ′ are
related to coordinates measured in F by a Lorentz transformation

t→ t′ = γ (t− vx/c2) ,
x→ x′ = γ (x− vt) ,
y → y′ = y,
z → z′ = z,

(2.1)

where
γ = 1/

√
1− v2/c2. (2.2)

Although neither the distance nor the time interval between two events is observer-
independent in special relativity, there is a concept of space-time interval, which
contains a little of both, and is something that all observers can agree upon.
In its infinitesimal form, the interval ds between two events at (t, x, y, z) and
(t+ dt, x+ dx, y + dy, z + dz) is given by

ds2 = c2dt2 − dx2 − dy2 − dz2. (2.3)

One can easily check that the value of ds does not change under this transforma-
tion. We say that ds is Lorentz invariant.
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2.1.2 Relativistic notation

If a theory – which is usually formulated in terms of a set of equations – is con-
sistent with the Principle of Special Relativity we often say that it is Lorentz
covariant. There is a notation which, if followed correctly, automatically ensures
that equations are Lorentz covariant. Quantities are assembled into 4-vectors
(and later on we will encounter 4-tensors) which transform in a simple linear
way when one compares their values between observers in different states of uni-
form motion. Just as one can form a 3-component vector xi from three spatial
coordinates

xi = (x1, x2, x3) ≡ (x, y, z), (2.4)

one can define the 4-vector space-time coordinate for an event by

xµ = (x0, x1, x2, x3) ≡ (ct, x, y, z). (2.5)

We shall adopt the following conventions when labelling vectors:

• Greek letters from mid-alphabet for space-time indices (µ, ν, ρ, σ, . . .);

• Roman letters from mid-alphabet for spatial indices (i, j, k, . . .);

• bold face will also be used for 3-vectors, e.g. x.

2.1.3 Matrix representation of Lorentz transformations

Recall the form of a Lorentz transformation between two frames of reference
moving with velocity v in the x direction relative to one another (2.1). This
linear transformation can be represented by matrices Λµ

ν acting linearly on the
coordinates:

xµ → x′µ =
3∑

ν=0

Λµ
νx

ν , (2.6)

or in differential form

dxµ → dx′µ =
3∑

ν=0

Λµ
νdx

ν , (2.7)

The matrix Λ has entries

Λµ
ν =


γ −γv/c · ·

−γv/c γ · ·
· · 1 ·
· · · 1

 , (2.8)

where µ labels the rows and ν the columns.
In order to save writing a large number of summation signs, we often use

Einstein’s convention that repeated indices in an expression are summed over au-
tomatically without the need for a summation sign. In this convention, Equation
(2.7 becomes

dxµ → dx′µ = Λµ
νdx

ν , (2.9)
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2.1.4 Space-time metric

It is convenient in special relativity (and fundamental in general relativity!) to
define a matrix gµν , which is used in the expression for the space-time interval:

ds2 =
3∑

µ,ν=0

gµνdx
µdxν . (2.10)

We call gµν the metric. In Special Relativity, the metric always takes a particular
constant value,

gµν = ηµν ≡


1 · · ·
· −1 · ·
· · −1 ·
· · · −1

 . (2.11)

We often call ηµν the Minkowski metric. In Einstein’s repeated index convemtion,
(2.10) can be written as

ds2 = ηµνdx
µdxν . (2.12)

Note that the position of the indices is important. There is a difference between
vectors with superscript indices and those with subscript indices, which shows up
in their properties under Lorentz transformations. We may use the metric tensor
to define an infinitesimal coordinate with a lower index:

dxµ = ηµνdx
ν (2.13)

Vectors with subscript indices are termed covariant, to distinguish them from
their contravariant partners with superscript indices. They transform oppositely
to contravariant 4-vectors, with the inverse of the Lorentz transformation matrix
Λ:

dxµ → dx′µ = (Λ−1)νµdxν . (2.14)

One can check that this is true by noting that the space-time interval can be
written ds2 = dxµdx

µ, and then substituting the transformation laws (2.7) and
(2.13). One finds

ds2 → ds′
2

= dx′µdx
′µ = (Λ−1)νµdxνΛ

µ
ρdx

ρ. (2.15)

Note that we have not just blindly substituted (2.7): we have the repeated index
from a ν to a ρ. The meaning is still the same: that index is to be summed over
the values 0,1,2,3. However, if we have left the index as ν equation (2.15) would
be ambiguous, as we would not know how to pair off indices in the summations.
This is an important rule with index notation: never use repeated indices twice
on the same side of an equation.

Continuing with equation (2.15), we note that the µ indices are paired and
can be summed over. We can see that we are multiplying a matrix Λ by its inverse
Λ−1 and therefore must obtain the identity, which expressed in index notation is

(Λ−1)νµΛµ
ρ = δνρ . (2.16)
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Here we introduce the Kronecker delta, defined by

δνµ =

{
1, µ = ν,
0, µ 6= ν.

(2.17)

Note that the spatial components of a 4-vector with its index lowered (or a
covariant vector) have the opposite sign to its counterpart with a raised index (a
contravariant vector):

x0 = x0, xi = −xi. (2.18)

Lastly, one can also define the metric tensor with raised indices as the matrix
inverse of the covariant metric tensor

ηµνη
νρ = δρµ, (2.19)

2.1.5 General Lorentz transformations: the Lorentz group

One can explicitly verify that the transformation law (2.1) leaves the space-time
interval ds invariant. By choosing space coordinates so that the relative velocity
of two inertial frames is along the x direction, it follows that all Lorentz trans-
formations leave the interval invariant. Let us see what we can infer about the
matrices Λ from this condition. The interval transforms as

ds2 → ds′2 = ηµνΛ
µ
ρΛ

ν
σdx

ρdxσ = ds2. (2.20)

But ds2 may be written ds2 = ηρσdx
ρdxσ: thus we may infer that

ηµνΛ
µ
ρΛ

ν
σ = ηρσ. (2.21)

Hence, any matrix Λ which leaves the metric ηµν invariant under the transforma-
tion (2.21) represents a Lorentz transformation. These matrices form a group of
transformations known as the Lorentz group. When combined with translation
symmetry, xµ → x′µ = xµ + aµ, with aµ a constant 4-vector, it forms a larger
group known as the Poincaré group.1

2.1.6 Derivatives

It is through studying derivatives that we discover the utility of the idea of co-
variant 4-vectors. Coordinate vectors are naturally contravariant, and it seems
slightly perverse to introduce a covariant version with lowered indices. How-
ever, it turns out that there are 4-vectors which are naturally covariant, and the
principal among these is the partial derivative 4-vector.

1A more detailed exploration of the properties of the Poincaré group, which is important for
understanding the concepts of mass and spin in quantum field theory, can be found in Ryder,
Chapter 2, or Peskin and Schroeder, Chapter 3.
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The standard partial derivatives with respect to spatial coordinates can be
collected together into a 3-vector:

∂i =
∂

∂xi
=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (2.22)

The ∂i are the components of the gradient operator ∇ in an orthonomal basis
ei, or

∇ = ei∂i. (2.23)

The relativistic generalisation is a covariant 4-vector ∂µ, which is defined as

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂xi

)
. (2.24)

The transformation law for ∂µ may be found from the chain rule:

∂

∂xµ
→ ∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
(2.25)

However, by differentiating
xν = (Λ−1)νµx

′µ, (2.26)

which follows from equation (2.6), we find that

∂

∂x′µ
= (Λ−1)νµ

∂

∂xν
. (2.27)

Hence the 4-vector differential really is a covariant 4-vector.

2.1.7 4-vectors and the scalar product

To recap, a contravariant 4-vector can be defined as any collection of four quan-
tities which transform the same way as dxµ under a Lorentz transformation.
Similarly, a covariant 4-vector can be defined as a collection of four quantities
which transform the same way as ∂µ. One can map any contravariant vector
into a covariant one with the metric ηµν , an operation called lowering the indices,
or one can go in the opposite direction with the inverse metric ηµν (raising the
indices).

There are many important quantities than can be assembled into 4-vectors:
for example, energy E and momentum p of a particle belong together in a single
momentum 4-vector pµ, defined by

pµ = (E/c,p). (2.28)

We are used to the interval ds2 = dxµdx
µ being a Lorentz invariant quantity, but

it is straightforward to see that one can form a Lorentz invariant quantity from
any pair of 4-vectors aµ, bµ. This is the scalar product, written

a · b ≡ p2 = aµbνηµν = aνb
ν = a0b0 − a1b1 − a2b2 − a3b3. (2.29)
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We can take the scalar product of the momentum 4-vector with itself and recover
the relativistic relation between energy, momentum and mass:

p2 = E2/c2 − p2c2 = m2c2, (2.30)

Another invariant can be constructed by contracting the momentum 4-vector
with the position 4-vector

p · x = Et− p·x. (2.31)

Another important object is the velocity 4-vector. In Newtonian mechanics, the
velocity is dxi/dt, so it might be thought that dxµ/dt is the analogous quantity.
However, dt is not Lorentz invariant, so the object as a whole does not transform
like dxµ as a 4-vector should. Instead, we should differentiate with respect to a
Lorentz invariant quantity. There is one ready-made for us in the form of the
space-time interval ds, from which we can define the proper time dτ = ds/c. The
4-velocity of a particle can then be written as

vµ =
dxµ

dτ
. (2.32)

2.1.8 The d’Alembertian

There is a second order differential operator which students of electromagnetism
will already have come across, called the wave operator or the d’Alembertian. It
is sometimes given its own symbol 2:

2 =
1

c2

∂2

∂t2
−∇2. (2.33)

This is already Lorentz invariant, for it may also be written as ∂µ∂νη
µν . You may

recall that it was partly consideration of the theory of electromagnetic waves that
led Einstein to formulate the special theory of relativity: electromagnetism (in
free space) is automatically a theory which is consistent with the special theory
of relativity, a fact which becomes obvious when it is written down in terms of
4-vectors and tensors. This is not at all obvious if it is written down as Maxwell
originally did, component by component.

2.1.9 Lorentz covariance

The power of 4-vector formalism is that when one uses it consistently to write
down equations, the equation will keep the same form under a Lorentz trans-
formation: that is, it will be Lorentz covariant. For example, we might want a
relativistic generalisation of Newton’s Second Law, F = dp/dt. We have already
seen that differentiations with respect to time should be changed to differen-
tiations with respect to proper time, so the analogous equation in relativistic
dynamics should be

F µ =
dpµ

dτ
. (2.34)
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The zeroth component of the force 4-vector, F 0, is the (proper) rate of change of
the energy of the particle.

A potential source of confusion is whether physical quantities are represented
by covariant or contravariant vectors. As a rule, coordinates and momenta nat-
urally have their indices up and derivatives naturally have their indices down.

2.2 Klein-Gordon equation

The Klein-Gordon equation was originally thought up by Schrödinger, who wanted
a relativistic wave equation describing the electron, even before he settled on what
we now call the Schrödinger equation,

ih̄
∂

∂t
ψ = − h̄2

2m
∇2ψ. (2.35)

Klein and Gordon published first, so they got the credit. We will see later
why Schrödinger dropped this equation. One of the ways of understanding the
Schrödinger equation is to recall that in quantum mechanics, physical quantities
are represented by operators:

E ↔ ih̄
∂

∂t
, p↔ −ih̄∇, (2.36)

(where the double-headed arrow symbol means “is represented by”). Hence the
Schrödinger equation (2.35) represents the non-relativistic equation for the kinetic
energy E = p2/2m.

As we know, the relativistic relation between energy and momentum is E2 =
p2 + m2, which seems to suggest that a relativistic version of the Schrödinger
equation ought to be

− ∂2

∂t2
φ = −∇2φ+m2φ, (2.37)

or, in a manifestly Lorentz covariant form,

(∂2 +m2)φ = 0. (2.38)

(It is traditional to use φ rather than ψ in this context).
The solutions to this equation are

φ(x) = Ae−iEt+p·x (2.39)

with E = ± =
√

(p2 +m2), and A an arbitrary complex constant.
In fact if φ is a solution to the Klein-Gordon equation it cannot be interpreted

as a wave function as Schrödinger discovered. A wave function is a probability
amplitude, whose modulus squared is the probability of finding the particle at
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a particular position (or with a particular momentum). For example, in non-
relativistic quantum mechanics, the probability density ρ = |ψ|2, which is asso-
ciated with a probability current j = −i(ψ∗∇ψ −∇ψ∗ψ)/2m, in the sense that
together they make up a probability conservation equation

ρ̇+∇·j = 0, (2.40)

an equation which one can check by differentiating ρ with respect to time and
using the Schrödinger equation.

The KG equation also has a conserved density and a 3-vector current, which
are

ρ = − i
2

(φ∗∂tφ− ∂tφ∗φ), j = − i
2

(φ∗∇φ−∇φ∗φ). (2.41)

However, this density cannot be interpreted as a probability density, as it is not
positive definite. This was the reason that Schrödinger chose the non-relativistic
form for his equation. This was reasonable for his purposes, but the Klein-Gordon
equation makes a comeback later, when we shall see that ρ can be interpreted as
a charge density, which is allowed to take both positive and negative values.

2.3 Maxwell’s equations in covariant form

This section recaps some important results, and introduces the formulation of
the theory in an explicitly Lorentz covariant manner.

Firstly, we recall Maxwell’s equations in free space, writing them down in
natural units, in which the permittivity and permeability of free space µ0 and ε0
are both unity:

Homogeneous Inhomogeneous
∇·B = 0 ∇·E = ρ

∂

∂t
B +∇ ∧ E = 0 − ∂

∂t
E +∇ ∧B = j

(2.42)

The homogeneous and inhomogeneous (i.e. having a source term on the right
hand side) equations have differing status. The homogeneous equations imply the
existence of potentials φ and A from which the physically measurable quantities
E and B can be calculated. These potentials are specified only up to a gauge
transformation, φ→ φ− Λ̇ and A→ A +∇Λ, where Λ is an arbitrary function
of space and time. The inhomogeneous equations imply that the source terms
must obey a current conservation equation, ρ̇+∇·j = 0. To summarise:

Homogeneous Inhomogeneous
potentials φ,A current conservation

B = ∇ ∧A

E = −Ȧ−∇φ
φ → φ− Λ̇
A → A +∇Λ

ρ̇+∇·j = 0

(2.43)
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All these quantities can be assembled into explicitly Lorentz covariant objects.
The gauge potentials belong together in a 4-vector potential Aµ = (φ,A), while
the charge density ρ and the current density j can be put together into a 4-vector
current density jµ = (ρ, j). Recall that putting quantities together into 4-vectors
is not just a matter of notation: it means that the quantities transform just like
the space-time coordinates xµ under a Lorentz transformation.

The electric and magnetic fields E and B also belong together in a Lorentz
covariant object, as they are mixed up by Lorentz transformations (an observer
moving through a magnetic field also sees an electric field). However, this object
cannot be a 4-vector as there are a total of 6 components of the electric and
magnetic fields, when they are taken together. In fact, the object is an anti-
symmetric tensor, the field strength tensor F µν , which is defined in terms of the
gauge potential 4-vector Aµ:

F µν = ∂µAν − ∂νAµ. (2.44)

The Lorentz transformation law for F µν follows from those of ∂µ and Aµ:

F µν → F ′
µν

= Λµ
ρΛ

ν
σF

ρσ, (2.45)

from which we explicitly see that F µν is a covariant tensor of rank 2. Let us
examine the components where ν = 0 and µ ranges over spatial indices i:

F i0 = ∂iA0 − ∂0Ai = ∂iA0 − Ȧi = −∂iφ− Ȧi = Ei, (2.46)

where we have used the expression for the electric field in terms of the gauge
potentials in equation (2.43). The magnetic field is contained in the entries
where both µ and ν take spatial values:

F ij = ∂iAj − ∂jAi = −∂iAj + ∂jA
i = −εijkBk, (2.47)

where we have introduced the Levi-Civita symbol εijk. The Levi-Civita symbol
is defined by

εijk =


+1 if i 6= j 6= k cyclic,
−1 if i 6= j 6= k anticyclic,
0 otherwise.

(2.48)

Written in matrix form, the field strength tensor is:

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (2.49)

The reverse relations may be written

Ei = F i0, Bi = −1

2
εijkF

jk, (2.50)
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which can be verified with the help of the identity

εijkεklm = δilδjm − δimδjl. (2.51)

When expressed in terms of 4-vectors and tensors, electromagnetism looks very
simple and beautiful. For example, the covariant expression of the current con-
servation equation is simply

∂µj
µ = 0. (2.52)

Maxwell’s equations become:

Homogeneous Inhomogeneous

∂λF µν + ∂µF νλ + ∂νF λµ = 0, ∂µF
µν = jν .

(2.53)

The first of these expressions looks as if it contains many more equations than the
4 of the original homogeneous Maxwell equations. However, the antisymmetry of
the field strength tensor (F µν = −F νµ) means that the expression is trivial if any
of the two indices are equal. Thus all the indices λ, µ and ν must take different
values, and the number of ways of choosing three different numbers from a set
of four is 4C3, which is equal to 4, precisely the number of equations we started
with.

We can use the four-dimensional Levi-Civita tensor to re-express the homo-
geneous equations more compactly. This tensor has four indices, and is defined
by

εµνρσ =


+1 if µ 6= ν 6= ρ 6= σ, symmetric,
−1 if µ 6= ν 6= ρ 6= σ, antisymmetric,
0 otherwise.

(2.54)

A symmetric permutation of the indices in one in which an even number of
indices are exchanged, while an antisymmetric permutation is one for which an
odd number of indices are exchanged. Thus, for example, ε0123 = ε1032 = +1,
ε1023 = ε0132 = −1, but ε0012 = 0.

There is also a version with the indices raised:

εµνρσ = ηµαηνβηργησδεαβγδ, (2.55)

whose symmetric permutations take the value −1 and antisymmetric ones +1.
Using this totally antisymmetric (i.e. antisymmetric on the exchange of any

two indices) tensor, the homogeneous Maxwell equations become

εµνρσ∂
ρF µν = 0. (2.56)

One of the problems uses this expression to give you practice with the summation
convention as applied to these tensors.
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2.3.1 Gauges

Recall that the gauge potential Aµ is specified only up to an arbitrary func-
tion of space and time Λ (see equation 2.43). The 4-vector version of a gauge
transformation is written

Aµ → Aµ − ∂µΛ, (2.57)

under which one can check that F µν is unchanged. Indeed, using (2.44) one finds

F µν → ∂µ(Aν − ∂νΛ)− ∂ν(Aµ − ∂µΛ) = F µν − (∂µ∂ν − ∂ν∂µ)Λ = F µν . (2.58)

The last step follows because we can take the partial derivatives in any order.
In order to use the gauge potential to solve the field equations, one should

eliminate this freedom to make gauge transformations, otherwise one can get
misled into thinking that the solutions one obtains are all physically distinct.
There are many ways to do this, but some of the most common are as follows.

Coulomb gauge This is also called radiation gauge, and is defined by

∇·A = 0, (2.59)

which implies that the first of the inhomogeneous equations in (2.42) becomes

∇2φ = −ρ. (2.60)

This gauge is therefore very useful in solving electrostatics problems, and we
shall use it later on when studying the Casimir effect. However, it is not so often
used in relativistic applications, as the gauge condition does not respect Lorentz
invariance.

The second of the inhomogeneous Maxwell equations becomes, on using the
gauge condition,

− ∂

∂t
(−Ȧ−∇φ)−∇2A = j, (2.61)

which we may write as

(
∂2

∂t2
−∇2)A = jT , (2.62)

where jT = j +∇φ̇. One can show, using the equation of current conservation
and Eq. (2.60), that

∇·jT = 0. (2.63)

This of course is necessary for the consistency of Eq. (2.62), because if one takes
the divergence of the left hand side one gets zero as well.

In free space, that is, in the absence of charges and currents, we may take
φ = 0, and the equation for the vector potential becomes

(
∂2

∂t2
−∇2)A = 0. (2.64)
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One of the important discoveries of the last century was that this equation has
plane wave solutions, which carry energy and momentum: electromagnetic waves.
Such a solution may be written

A(t,x) = ae−iωt+ik·x (2.65)

where a is a constant 3-vector, and ω = ±|k|.
The gauge condition (2.59) imposes a condition on the vector a, for

∇·A = ik·a e−iωt+ik·x = 0, (2.66)

which implies
k·a = 0, (2.67)

Hence the gauge potential A is orthogonal to the wave vector k, which removes
one of the three apparent degrees of freedom of the field. Thus the field oscillates
in directions orthogonal to the direction of propagation: we say that the waves
are transverse.

Lorentz gauge This is very often the gauge to choose if one is interested in
wave propagation in electromagnetism. It is defined by

∂µA
µ = 0, (2.68)

and is manifestly Lorentz invariant. In this gauge the equation of motion for the
gauge field is simplified, for

∂µF
µν = ∂µ∂

µAν − ∂µ∂νAµ = ∂2Aν = jν . (2.69)

However, an irritating feature of this gauge is that it does not quite specify Aµ

fully. One can still make a gauge transformation Aµ → Aµ − ∂µΛ which satisfies
the Lorentz gauge condition (2.68), as long as the function Λ satisfies ∂2Λ = 0.
Such functions are called harmonic. In classical field theory this is not too much
of a problem, but in setting up the quantum theory of gauge fields care must be
taken.

In free space, the field equation is (2.69)

2Aµ ≡ (
∂2

∂t2
−∇2)Aµ = 0, (2.70)

which looks very much like four copies of the Klein-Gordon equation for fields
with zero mass. Plane wave solutions may be written

Aµ(t,x) = aµe−ik·x (2.71)

where we recall that k · x = k0t − k·x, and k0 = ±|k|, Again, aµ is a constant
4-vector.
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The Lorentz gauge condition (2.68) are

∂µA
µ = −ikµaµe−ikµx

µ

= 0, (2.72)

which implies that
k · a = 0. (2.73)

Once again the field is orthogonal to the wave vector kµ, but this time in the
4-vector sense.

Once the gauge condition is taken into account there are apparently three
degrees of freedom, one more than in the Coulomb gauge. However, one of
those is unphysical as a result of the remaining freedom to make harmonic gauge
transformations.

3 Lagrangian formulation of field theory

3.1 Lagrangian and Hamiltonian mechanics

The starting point for classical mechanics is Newton’s Second Law of Motion,
which states that the rate of change of momentum of a particle is proportional
to the applied force. For a system of P particles, we may write

ṗA = FA, (3.1)

where the index A runs from 1 to P . The momentum pA = mAvA, where
vA = ẋA. If the mass is constant in time, we obtain the formulation mAẍA = FA.

If the force is conservative, which means that the work done by the force
around a closed path is zero, then the force can be written as the gradient of a
potential energy V :

FA = −∇AV (x1, . . . ,xP ). (3.2)

There may also be constraints on the motion: for example, the particles may
be forced to move on a sphere. This reduces the number of degrees of freedom of
the system. A very common form of constraint is one which relates some or all of
the coordinates through a function (which may also depend explicitly on time):

f(x1, . . . ,xP , t) = 0. (3.3)

These are known as holonomic constraints. For example, the first particle may be
constrained to move on a sphere of radius a, or x2

1 = a2. Thus we lose one degree
of freedon, the radial coordinate of the particle. If there are k such constraints,
then the effective number of degrees of freedom is reduced by k: P particles
moving in 3 dimensions under k constraints have 3P − k degrees of freedom.
Thus not all of the coordinates are needed to describe the motion of the system,
and it is convenient to introduce the notion of generalised coordinates qa which
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result from the solution of the constraint equations. In the system of particles
there will be N = 3P − k of them, and one can express the original coordinates
as functions

x1 = x1(q1, . . . , qN , t)
...

... (3.4)

xP = xP (q1, . . . , qN , t)

Generalised coordinates are also useful in systems without constraints: for exam-
ple, orbits around central potentials, where it is convenient to use spherical polar
coordinates.

3.1.1 Lagrangian Mechanics

There is a later and more sophisticated formulation of classical mechanics due to
Lagrange. We define the kinetic and potential energies T and U in terms of the
generalised coordinates of a system as

T =
1

2

∑
a

maq̇
2
a, U = U(qa, q̇a) (3.5)

(we have allowed for the possibility of a velocity-dependent potential). We then
introduce a new function called the Lagrangian, defined as

L = T − U. (3.6)

The equations of motion of the system are then

∂L

∂qa
− ∂

∂t

(
∂L

∂q̇a

)
. (3.7)

These equations are known as the Euler-Lagrange equations.
For example, suppose there is no velocity dependence in the potential. Then

∂L

∂qa
= −∂U

∂qa
,

∂L

∂q̇a
= maq̇a, (3.8)

so that
∂

∂t
(maq̇a) = −∂U

∂qa
. (3.9)

Thus we return to Newton’s Second Law. The quantities ∂L/∂q̇a can be identified
as a momentum associated with the coordinate qa – if the qa are simply Cartesian
coordinates, then they are the ordinary mechanical momenta, but in general
we refer to them as conjugate or canonical momenta, which are defined as the
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derivative of the Lagrangian with respect to the rate of change of the generalised
coordinates:

pa =
∂L

∂q̇a
. (3.10)

The Euler-Lagrange equations can be derived from a variational principle,
known as Hamilton’s Principle or the Principle of Least Action (which is a mis-
nomer). The action for a system between times t1 and t2 is defined as

I =
∫ t2

t1
dt L(qa, q̇a, t). (3.11)

The Principle of Least Action states that the action is an extremum for the path
of the motion.

To see this, let us consider a small variation in the path, vanishing at t1 and
t2, sends qa(t)→ q′a(t) = qa(t) + δqa(t) (see Figure 3.1). The action also changes,
I → I ′ = I + δI, where to first order in δqa(t),

δI =
∫ t2

t1
dt δL(qa, q̇a, t) =

∫ t2

t1
dt

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a

)
. (3.12)

Integrating by parts we find

δI =
∫ t2

t1
dt

(
∂L

∂qa
− ∂

∂t

(
∂L

∂q̇a

))
δqa +

[
∂L

∂q̇a
δqa

]t2
t1

. (3.13)

The second term vanishes, as we are keeping the end points of the path fixed,
and so if the variation of the action δI vanishes we find that

∂L

∂qa
− ∂

∂t

(
∂L

∂q̇a

)
= 0, (3.14)

which are precisely the Euler-Lagrange equations (3.7).

3.1.2 Hamiltonian Mechanics

There is yet another formulation of classical mechanics due to Hamilton. It may
seem excessive to have so many ways of doing the same thing, but each formu-
lation has its own advantages: for example, the Lagrangian and Hamiltonian
formulations are very powerful in bringing out conservation laws in dynamical
systems, and relating them to symmetries.

Recall that associated with each coordinate qa there is also a conjugate mo-
mentum pa, defined by Eq. (3.10). We can therefore express the Euler-Lagrange
equations as ṗa = ∂L/∂qa. We now define an important function called the
Hamiltonian from the Lagrangian:

H(pa, qa, t) =
∑
a

paq̇a − L(qa, q̇a, t). (3.15)
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δq(t)

q

q(t)

q(t  )

q(t  )

1

2

t

Figure 3.1: A path q(t) for a system with one coordinate, and a small
variation δq(t) to that path. Classical paths are ones for which the action
(see Equation 3.11) is stationary under such small variations.

The idea is to replace q̇a by pa, having solved equation (3.10). The first of Hamil-
ton’s equations follows from the Euler-Lagrange equations (3.7), after noting that
∂L/∂qa = −∂H/∂qa. It is

ṗa = −∂H
∂qa

. (3.16)

The second follows straightforwardly from the definition of the Hamiltonian (3.15)
upon partial differentiation with respect to pa:

q̇a =
∂H

∂pa
. (3.17)

If the Lagrangian does not depend explicitly on time, the Hamiltonian is a con-
stant of the motion, as the following calculation shows. Recall thatH is a function
of qa, pa, and possibly t only. Hence

dH

dt
=
∂H

∂t
+
∑
a

(
∂H

∂pa
ṗa +

∂H

∂qa
q̇a

)
. (3.18)

Using Hamilton’s equations (3.16,3.17) we see that

dH

dt
=
∂H

∂t
= −∂L

∂t
. (3.19)

Thus if ∂L/∂t = 0, the Hamiltonian is constant. One can also show that

H = T + U, (3.20)
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where T and U are the kinetic and potential energies introduced in (3.5). Thus
the Hamiltonian can be identified with the total energy of the system.

As a trivial example, consider a set of N free particles with mass m. The
Lagrangian is

L =
1

2

∑
a

mq̇2
a, (3.21)

from which we can easily derive the Euler-Lagrange equations

0− ∂

∂t
(mq̇a) = 0, (3.22)

or that the acceleration of each particle is zero. The conjugate momentum is
pa = mq̇q, and hence the Hamiltonian becomes

H =
1

2

∑
a

p2
a

m
. (3.23)

This is of course the familiar non-relativistic expression for the kinetic energy.

3.2 Lagrangian mechanics for the real scalar field

A field is an object which takes a value (e.g. a real number) at every point in space-
time. We are probably most familiar with the electric and magnetic vector fields
E(t,x) and B(t,x), which we have seen can be unified into the electromagnetic
field strength tensor F µν(x). The Klein-Gordon field φ(t,x), which takes complex
values, is another example.

A very powerful way of classifying fields is to organise them according to their
properties under Lorentz transformations. The Klein-Gordon field is an example
of a scalar field, which transforms as a scalar (a pure number):

φ(x)→ φ′(x′) = φ(x), (3.24)

where x′µ = Λµ
νx

ν .
In field theory, the dynamical coordinates, the analogues of the qa of classical

Lagrangian mechanics, are the values of the fields at every point. A field therefore
has an uncountably infinite number of degrees of freedom, which is the source
of many of the difficulties in field theory. Sums over the label a are replaced by
integrals over space: for example, the Lagrangian can be expressed as the integral
over space of an object called the Lagrangian density L. For a scalar field, the
Lagrangian density can be expressed as a function of the field, its time derivative,
and also its spatial derivatives:

L =
∫
d3x L(φ, φ̇,∇φ, t). (3.25)
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The appearance of spatial derivatives may at first sight be puzzling, but arises
naturally from terms coupling neighbouring space points, in the limit that the
separation goes to zero. The puzzle is perhaps more that higher derivatives don’t
appear: in practice, they seem not be relevant for most applications in particle
physics.

t

1

2

t

x

y

R

t

B

Figure 3.2: A space-time diagram (with the z coordinate suppressed)
of the four-dimensional region in which the variation of the field δφ(x)
is non-zero.

From a Lagrangian we can derive Euler-Lagrange equations, by the applica-
tion of Hamilton’s Principle to the action for a scalar field,

I =
∫ t2

t1
Ldt =

∫ t2

t1
dtd3x L(φ, φ̇,∇φ, t). (3.26)

Consider an arbitrary variation in the field, φ(x) → φ(x) + δφ(x), where δφ(x)
vanishes at t1 and t2, and outside an arbitrary spatial region R with boundary B
(see Figure 3.2). This variation causes a small change in the action:

I → I ′ = I + δI. (3.27)

Taylor expanding the Lagrangian density, we find

I ′ '
∫ t2

t1
dtd3x

[
L+

∂L
∂φ

δφ+
∂L
∂∇φ ·∇δφ+

∂L
∂φ̇

δφ̇

]
, (3.28)

where
∂L
∂∇φ =

(
∂L

∂(∂xφ)
,

∂L
∂(∂yφ)

,
∂L

∂(∂zφ)

)
. (3.29)
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We can separate out the variation in the action δI, and integrate the last term
by parts, to obtain

δI =
∫ t2

t1
dtd3x

[
∂L
∂φ

δφ+
∂L
∂∇φ ·∇δφ−

∂

∂t

(
∂L
∂φ̇

)
δφ

]
+

[
∂L
∂φ̇

δφ

]t2
t1

. (3.30)

In this last expression the last term vanishes because of the conditions placed on
δφ at t1 and t2. Hence, upon integrating by parts again, we get

δI =
∫ t2

t1
dtd3x

[
∂L
∂φ

δφ−∇· ∂L
∂∇φδφ−

∂

∂t

(
∂L
∂φ̇

)
δφ

]
+
∫ t2

t1
dt
∫
B

dS·
[
∂L
∂∇φδφ

]
.

(3.31)
Again, the last term vanishes, as we supposed that the variation δφ vanished on
the boundary B. Hence we are left with

δI =
∫ t2

t1
dtd3x

[
∂L
∂φ
−∇· ∂L

∂∇φ −
∂

∂t

(
∂L
∂φ̇

)]
δφ. (3.32)

The argument proceeds by noting that not only is δφ arbitrary, but so is the
region R. Hence the condition that the action be stationary reduces to

∂L
∂φ
−∇· ∂L

∂∇φ −
∂

∂t

∂L
∂φ̇

= 0. (3.33)

This is the Euler-Lagrange equation for a scalar field.
We can put it into a more obviously relativistic form by noting that ∂µφ =

(∂tφ, ∂iφ), so that the Euler-Lagrange equation becomes

∂L
∂φ
− ∂i

∂L
∂(∂iφ)

− ∂0
∂L

∂(∂0φ)
= 0, (3.34)

or
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0. (3.35)

If there are many fields φa we can derive an Euler-Lagrange equation for each of
them,

∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

= 0. (3.36)

We are now in a position to ask the question: from what Lagrangian density
does the Klein-Gordon equation follow? The Klein-Gordon field may be split into
its real and imaginary parts, φ(x) = φR(x)+ iφI(x), each of which obey the same
equation

(∂µ∂µ +m2)φR(x) = 0, (∂µ∂µ +m2)φI(x) = 0. (3.37)

Consider first the following Lagrangian density for the real part,

LR =
1

2
∂µφR∂µφR −

1

2
m2φ2

R. (3.38)
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We can immediately derive

∂L
∂φR

= −m2φR,
∂L

∂(∂iφR)
= ∂iφR,

∂L
∂(∂0φR)

= ∂0φ. (3.39)

Hence,
∂L

∂(∂µφR)
= (∂0φR, ∂

iφR), (3.40)

and so
∂L
∂φR

− ∂µ
∂L

∂(∂µφR)
= −m2φR − ∂µ∂µφR = 0. (3.41)

Thus the Lagrangian (3.38) implies the correct equation for the real part of the
Klein-Gordon field: exactly the same argument may be made for the imaginary
part of the field, so we can write for the total lagrangian

L = LR + LL =
1

2
∂µφR∂µφR −

1

2
m2φ2

R +
1

2
∂µφI∂µφI −

1

2
m2φ2

I

=
1

2
∂µφ∗∂µφ−

1

2
m2φ∗φ. (3.42)

Lastly in this section, we will write down the Hamiltonian for a single real
scalar field. Drawing on our experience with finite numbers of degrees of freedom,
it seems natural to define a conjugate momentum

π(x) =
∂L
∂φ̇(x)

. (3.43)

Thus for our example (3.38), the conjugate momnetum π(x) = φ̇(x). The Hamil-
tonian for the real scalar field is defined by

H =
∫
d3x π(x)φ̇(x)−

∫
d3xL(φ, ∂iφ, φ̇). (3.44)

If the field obeys the Klein-Gordon equation, its Hamiltonian is

H =
∫
d3x

[
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2

]
. (3.45)

We talk of the three terms in the Hamiltonian as kinetic, gradient and potential
terms respectively. One can allow more general functions of φ in the potential
term than just a quadratic:

H =
∫
d3x

[
1

2
π2 +

1

2
(∇φ)2 + V (φ)

]
. (3.46)

In classical field theory, V can be any function of φ, as long as it is bounded below,
otherwise the energy of the field can become arbitrarily negative. Quantum field
theory is much more restrictive about the terms it allows: it turns out that the
theory does not make sense in four space-time dimensions unless V (φ) is restricted
to be a polynomial of degree no more than four.
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3.3 Lagrangian mechanics for the electromagnetic field

The electromagnetic gauge potential Aµ(x) is an example of a 4-vector field, which
is a field which transforms like a covariant 4-vector. Its behaviour under Lorentz
transformations is

Aµ(x)→ A′
µ
(x′) = Λµ

νA
ν(x), (3.47)

where x′µ = Λµ
νx

ν . In this section we will write down a Lagrangian density, and
show that the resulting Euler-Lagrange equations are just the inhomogeneous
Maxwell equations. The homogeneous ones will be shown to be an identity,
rather than arising from any variational principle. The Lagrangian is

L = −1

4
FµνF

µν − jµAµ, (3.48)

where Fµν = ∂µAν − ∂νAµ. The generalised coordinates of this system are the
four components the gauge field Aµ. We can therefore derive Maxwell’s equations
by looking at the Euler-Lagrange equations:

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= 0. (3.49)

Let us first consider the variation with respect to Aν , which gives

∂L
∂Aν

= −jµ∂Aµ
∂Aν

= −jµδνµ = −jν . (3.50)

The variation with respect to ∂µAν is a little more complex, and it will help to
define Xµν = ∂µAν , so that Fµν = Xµν −Xνµ. Hence

∂µ
∂L

∂(∂µAν)
= −1

4

∂Fρσ
∂Xµν

F ρσ − 1

4
Fρσ

∂F ρσ

∂Xµν

,

= −1

4

(
δµρ δ

ν
σ − δµσδνρ

)
F ρσ − 1

4
Fρσ (ηµρηνσ − ηµσηνρ) ,

= −1

4
(F µν − F νµ)− 1

4
(F µν − F νµ)

= −F µν . (3.51)

Thus we can substitute (3.50) and (3.51) back into the Euler-Lagrange equation
(3.49) to obtain

−∂µF µν + jν = 0, (3.52)

which we recognise as the covariant form of the inhomogeneous Maxwell equa-
tions.

We now turn to the homogeneous Maxwell equations, and demonstrate that
they are an identity, which is sometimes known as the Bianchi identity. This
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can be seen by examining the 4-vector kµ = 1
2
εµνρσ∂

νF ρσ = 0. Substituting the
expression for the field strength tensor in terms of the gauge potential, we obtain

kµ =
1

2
εµνρσ∂

ν(∂ρAσ − ∂σAρ). (3.53)

By exchanging the labels σ and ρ in the second term we find

kµ =
1

2
εµνρσ∂

ν∂ρAσ − 1

2
εµνσρ∂

ν∂ρAσ, (3.54)

= εµνρσ∂
ν∂ρAσ, (3.55)

with the last step following by the antisymmetry of the Levi-Civita tensor. Now
we exchange the labels ν and ρ, from which we can deduce

εµνρσ∂
ν∂ρAσ = εµρνσ∂

ρ∂νAσ. (3.56)

The antisymmetry of the Levi-Civita tensor then shows that

εµνρσ∂
ν∂ρAσ = −εµνρσ∂ν∂ρAσ. (3.57)

The only number that is equal to its negative is zero, hence

1

2
εµνρσ∂

νF ρσ = 0. (3.58)

Thus we have demonstrated that the Principle of Least Action applied to the
Lagrangian (3.48), combined with the Bianchi identity (3.58), results in Maxwell’s
equations.

3.4 Noether’s theorem and conservation laws

It is a profound feature of both classical and quantum dynamics that conservation
laws, such as conservation of energy or momentum, follow from symmetries of the
dynamical equations. In this section we shall show how this feature is realised in
classical field theory.

A conservation law can be expressed in two equivalent ways. Firstly, and most
obviously, one can say that there is a quantity Q which is constant in time, i.e.

dQ

dt
= 0. (3.59)

Entirely equivalently, one can also say that there is a 4-vector current jµ(x) which
satisfies a continuity equation,

∂µj
µ(x) = 0. (3.60)
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If we integrate (3.60) over all space, we find∫
d3x

∂

∂t
j0(x) +

∫
d3x∇ · j = 0. (3.61)

Defining Q =
∫
d3x j0(x), we find using Gauss’s Law that

dQ

dt
= −

∫
∞

dS · j, (3.62)

where the surface integral is taken over a sphere at spatial infinity. With the
assumption that all currents die off at infinity, we have

dQ

dt
= 0. (3.63)

Hence the existence of a 4-vector current satisfying a continuity equation ∂µj
µ(x) =

0 automatically implies that there is a conserved quantity, which is the integral
over all space of the time component of the current.

Now consider a theory with N real fields φa(x), with a = 1, . . . , N , and an
action

S =
∫
d4xL(φa, ∂φa). (3.64)

Noether’s theorem for this theory can be stated as follows.
For every transformation φa(x) = φ′a(x

′) which leaves the action S invariant,
there is a conserved current.

The proof of this theorem is quite involved, and we first need some definitions.
Let us first define the total variation in the field,

δφa(x) = φ′a(x
′)− φa(x). (3.65)

Note that this variation can be split into two pieces, the first due to the fact that
the functions φa are changing:

δ̃φa(x) = φ′a(x)− φa(x), (3.66)

which defines what we mean by the operator δ̃. The remaining piece can be
interpreted as the change in the field functions due to the change in coordinates,

∆φa(x) = φa(x
′)− φa(x) ' ∂µφa(x)δxµ, (3.67)

where δxµ = x′µ − xµ. Hence

δφa(x) ' δ̃φa(x) + ∆φ′a(x) ' δ̃φa(x) + ∆φa(x), (3.68)

where we have dropped at term of second order in the variation, as ∆φ′a(x) =
∆φa(x) +O(δφδx).
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One can show straightforwardly from the definition of δ̃ that

δ̃(∂µφa(x)) = ∂µ(δ̃φa(x)), (3.69)

but that
δ(∂µφa(x)) = ∂µ(δφa(x))− ∂νφa(x)∂µδx

ν . (3.70)

Hence the partial derivative operator commutes with δ̃, but not with δ.
Now consider the effect of the variation in Eq. 3.65 on the action:

δS =
∫

Ω
d4x′ L′(x′)−

∫
Ω
d4xL(x), (3.71)

where L′(x′) = L(φ′a(x
′), ∂φ′a(x

′)), and Ω is an arbitrary region in spacetime. By
adding and subtracting L(x) to the first integrand, we see

δS =
∫

Ω
d4x′ δL′(x) +

∫
Ω
d4x′ L(x)−

∫
Ω
d4xL(x). (3.72)

We now need to express the integration measure d4x′ in terms of d4x, using
the Jacobian of the coordinate transformation:

d4x′ = d4x

∣∣∣∣∣∂(x′0, . . . , x′3)

∂(x0, . . . , x3)

∣∣∣∣∣ = d4x| det M|, (3.73)

where the components of the matrix M are given by

Mµ
ν =

∂x′µ

∂xν
' δµν + ∂νδx

µ. (3.74)

In matrix notation, we may write M = 1 + δM, and using the standard matrix
identity

ln det M = tr ln M, (3.75)

we see that
det M ' 1 + tr δM = 1 + ∂µδx

µ. (3.76)

Substituting into the varation of the action Eq. (3.71), we find

δS =
∫

Ω
d4x (1 + ∂µδx

µ)δL′(x) +
∫

Ω
d4x (1 + ∂µδx

µ)L(x)−
∫

Ω
d4xL(x). (3.77)

Dropping terms which are second order in the variation we arrive at

δS =
∫

Ω
d4x δL(x) +

∫
Ω
d4x ∂µδx

µL(x) (3.78)

Now we can again split the variation in the Lagrangian function into a piece
arising from the change in the function itself, and that due to the change of
coordinates:

δL(x) = δ̃L(x) + ∂µL(x)δxµ. (3.79)
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The change in the Lagrangian function arises because of the change in the func-
tional form of the fields, so

δ̃L(x) =
∂L
∂φa

(x)δ̃φa(x) +
∂L

∂(∂µφa)
(x)δ̃(∂µφa(x)). (3.80)

At this point, the commutativity of δ̃ and ∂µ stated earlier means that

δS =
∫

Ω
d4x

(
∂L
∂φa

(x)δ̃φa(x) +
∂L

∂(∂µφa)
(x)∂µ(δ̃φa(x))

+
∫

Ω
d4x (∂µL(x)δxµ + L(x)∂µδx

µ)
)
. (3.81)

Some simple algebra shows that

δS =
∫

Ω
d4x

(
∂L
∂φa
− ∂µ

∂L
∂(∂µφa)

)
δ̃φa(x) +

∫
Ω
d4x ∂µ

(
∂L

∂(∂µφa)
δ̃φa + L(x)δxµ

)
.

(3.82)
Note that the first term is precisely the variation in the action we found when
deriving the Euler-Lagrange equation, where we considered variations in the fields
alone, vanishing on the boundary of Ω. Suppose we consider a particular field
configuration φ(x) satisfying the Euler-Lagrange equation. If we then make an
infinitesimal transformation on it which leaves the action invariant, i.e. which
results in no first-order change in the action, we must have that

∂µf
µ = 0, (3.83)

where

fµ =
∂L

∂(∂µφa)
δ̃φa(x) + Lδxµ, (3.84)

or substituting back for δ̃φ(x),

fµ =
∂L

∂(∂µφa)
δφa(x)−

(
∂L

∂(∂µφa)
∂νφa(x)− Lδµν

)
δxν . (3.85)

Thus we see the appearance of an infinitesimal 4-vector, fµ, which satisfies a
continuity equation.

3.4.1 Conservation of energy-momentum

Consider a translation on the coordinates, with the fields unchanged:

δxµ = εµ, δφa = 0, (3.86)

where εµ is a constant 4-vector. This clearly includes both space and time trans-
lations. Hence we can write

fµ = θµνε
ν , (3.87)
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where we have introduced the canonical energy-momentum tensor

θµν =
∂L

∂(∂µφa)
∂νφa(x)− Lδµν . (3.88)

Because the translations εµ are arbitrary, translation invariance of the Lagrangian
implies that there must be four continuity relations,

∂µθ
µ
ν = 0. (3.89)

The conserved “charge” associated with these four continuity relations is the total
4-momentum,

Pµ =
∫
d3xθ0

µ(x). (3.90)

4 Canonical quantisation

We have seen that the Klein-Gordon field φ(x) does not have the interpretation
as a single-particle wave-function, as it does not have a conserved probability
current, and it possesses negative energy states which cannot form a “Dirac sea”.
However, as we shall see in this section, the theory of the quantum field operator
φ̂(x) is in fact a relativisitic many-particle quantum theory. The process of de-
veloping the theory of a quantum field is sometimes misleadingly called “second
quantisation”, perhaps because of some idea that one is quantising a wavefunc-
tion, itself a quantum object. It should be emphasised at the outset that the
scalar field, real or complex, is not a wavefunction.

In this section we go through the quantisation procedure for free fields. By
“free” we mean non-interacting: once a state has been set up there are no tran-
sitions to any other states. In practice this means that the Lagrangian can be
written as a quadratic function of the fields. Free fields may sound somewhat
irrelevant, but nearly all quantum field theories have to be treated as small pertur-
bations away from free field theories, so it is an appropriate place to start. There
are non-trivial effects in free field theory which come from boundary conditions:
one of these effects is the Casimir effect in the free electromagnetic field.

4.1 Quantisation of finite systems

In this section we shall proceed with quantising the real scalar field. Firstly, we
will go through the quantisation procedure for a system with a finite number
of degrees of freedom, to show that quantising a field is not unlike quantising a
more familiar system. Suppose the system has N coordinates qa with associated
velocities q̇a, and Lagrangian

L =
1

2

N∑
a=1

mq̇2
a − U(qa) (4.1)
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(we are supposing for simplicity’s sake that all the masses are the same). Each
coordinate is also associated with a conjugate momentum pa, defined as the
differential of the Lagrangian with respect to the velocity q̇a, which in this case
has the value mq̇a. The Hamiltonian, defined as 1

2

∑
a q̇apa − L, is then

H =
N∑
a=1

p2
a

2m
+ U(qa). (4.2)

The procedure of canonical quantisation replaces the classical conjugate variables
qa, pa by operators obeying the following commutation relations

[q̂a, p̂b] = iδab, [q̂a, q̂b] = 0 = [p̂a, p̂b]. (4.3)

The Hamiltonian is also replaced by an operator Ĥ, which generates the time
evolution of the system. We are probably used to thinking about time evolution
as the change in time of the state of the system, governed by the Schrödinger
equation

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉. (4.4)

However, there is another way of thinking about the time evolution of a quantum
mechanical system known as the Heisenberg picture (to distinguish it from the
Schrödinger picture above).

In the Heisenberg picture, the states |ψ〉H that are time-independent, and the
time evolution of the system is transferred to the operators OH(t), which satisfy
the Heisenberg equations

i
d

dt
OH(t) = [OH(t), H]. (4.5)

The states and operators in these two pictures can be related by a unitary trans-
formation eiHt (a unitary operator is one whose inverse is its Hermitian conju-
gate). Thus, if we suppose that the two sets of operators and states coincide at
t = 0, they are related at all times by

OH(t) = eiHtOSe
−iHt

|ψ〉H = eiHt|ψ(t)〉S. (4.6)

This ensures that the matrix elements are the same. To see this, let us consider
the matrix elements between any two states |ψ〉H and |ψ′〉H in the Heisenberg
picture, and apply these transformations:

H〈ψ|OH(t)|ψ′〉H = S〈ψ(t)|e−iHteiHtOSe
−iHteiHt|ψ′(t)〉S

= S〈ψ(t)|OS|ψ′(t)〉S. (4.7)

This demonstrates that the Heisenberg picture matrix elements are the same as
those in the Schrödinger one, which means there is no difference in the physical
predictions one makes.
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4.2 The real scalar field

We begin with the Lagrangian density

L =
1

2
∂µφ∂µφ−

1

2
m2φ2, (4.8)

from which we can define the conjugate momentum

π(x) =
∂L
∂φ̇(x)

. (4.9)

The Hamiltonian density is then found from

H = π(x)φ̇(x)− L =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2. (4.10)

In free quantum field theory we usually work in the Heisenberg picture, where the
fields carry the time dependence, although it is possible to use the Schrödinger
picture. The field theory is quantised by constructing the equal time canonical
commutation relations

[φ(t,x), π(t,x′)] = ih̄δ3(x− x′), (4.11)

[φ(t,x), φ(t,x′)] = 0, (4.12)

[π(t,x), π(t,x′)] = 0, (4.13)

where δ3(x − x′) = δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3). One can see the analogy
between the field commutation relations and (4.3) if one recalls that the space
coordinate x is like the label a in the system with a finite number of degrees of
freedom. The δ-function acts in the same way for a continuous label x as the
Kronecker δ does for a discrete label.

So in quantum field theory, the fields become operators, obeying the Heisen-
berg equations

˙̂
φ(x) =

1

i

[
φ̂(x), Ĥ

]
, ˙̂π(x) =

1

i

[
π̂(x), Ĥ

]
, (4.14)

where Ĥ is the quantum Hamiltonian, constructed by replacing the classical fields
by operators in the original:

Ĥ =
∫
d3x

(
1

2
π̂2 +

1

2
(∇φ̂)2 +

1

2
µ2φ̂2

)
. (4.15)

It is straightforward to show for a free field that

˙̂
φ(x) = π̂(x), ˙̂π(x) = (∇2 −m2)φ̂(x). (4.16)
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Hence the field operator obeys the same equation of motion as the classical field.
It is convenient to expand the field operator in terms of eigenfunctions of the
operator (−∇2 +m2),

(−∇2 +m2)eik·x = ω2
ke

ik·x. (4.17)

Writing

φ̂(x) =
∫ d3k

(2π)3
(fk(x)â(k) + f ∗k(x)â∗(k)) . (4.18)

with fk(x) = Ak(t)eik·x, we see that fk(x) obeys the field equation (∂2+m2)fk(x) =
0 if

Ak(t) = Nke
−iωkt (4.19)

The normalisation factor Nk is essentially arbitrary, although almost everyone
uses one of two conventions outlined below. The properties of the operators
â(k) and â∗(k) can be deduced from the commutation relations of φ̂ and π̂. We
therefore need expressions for â(k) and â∗(k) in terms of φ̂ and π̂, where

π̂(x) =
˙̂
φ(x) =

∫ d3k

(2π)3

(
−iωkNkâ(k)e−ik·x + iωkN ∗k â∗(k)eik·x

)
. (4.20)

Firstly, we take the Fourier transform of the field operator and its conjugate
momentum:

φ̂(k′, t) =
∫
d3xφ̂(x)e−ik

′·x, π̂(k′, t) =
∫
d3xπ̂(x)e−ik

′·x, (4.21)

and use the relation ∫
d3xei(k−k′)·x = (2π)3δ3(k− k′) (4.22)

to obtain

φ̂(k′, t) = Nkâ(k′)e−iωk′ t +N ∗k â∗(−k′)eiωk′ t (4.23)

π̂(k′, t) = −iωk′Nk′ â(k′)e−iωk′ t + iωk′N ∗k′a(k′)â∗(−k′)eiωk′ t. (4.24)

Hence
2ωkNωk

â(k′) =
∫
d3x(iπ̂(x) + ωk′φ̂(x))eik

′·x. (4.25)

By complex conjugation one obtains

2ωkN ∗ωk′
â∗(k′) =

∫
d3x(−iπ̂(x) + ωk′φ̂(x))e−ik

′·x. (4.26)

One can then derive the commutation relation

[â(k), â∗(k′)] = (2π)3δ3(k− k′)/2ωk|Nk|2, (4.27)
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This looks very similar to the commutation relations for simple harmonic oscil-
lators. We recall that the harmonic oscillator of unit mass is described by the
Hamiltonian

H =
1

2
p2 +

1

2
ω2x2, (4.28)

where ω is the angular frequency of oscillation. Upon quantisation, the operators
â = (ip̂+ωx̂)/

√
2ω and â∗ = (−ip̂+ωx̂)/

√
2ω satisfy the commutation relations

[â, â∗] = 1. (4.29)

This correspondence suggests that one choice for the normalisation factor:

Nk =
1√
2ωk

, (4.30)

in which case we find for the complete set of commutation relations

[a(k), a∗(k′)] = (2π)3δ3(k− k′), (4.31)

[a(k), a(k′)] = 0, (4.32)

[a∗(k), a∗(k′)] = 0. (4.33)

The right hand side of the first equation, with its δ-fucntion, is the closest we
can get to unity when we are dealing with functions of a continuous variable like
a(k). However, we shall adopt a convention which keeps the Fourier expansions
of the field operators Lorentz invariant,

Nk =
1

2ωk

, (4.34)

which means that the first commutation relation becomes

[â(k), â∗(k′)] = 2ωk(2π)3δ3(k− k′). (4.35)

It is also quite common to work in a finite volume V , which means that instead
of integrals over k we have sums over allowed wavevectors k = 2π(n1, n2, n3)/L,
which go over to integrals in the infinite volume limit:

1

V

∑
k

→
∫ d3k

(2π)3
. (4.36)

All wavefunctions are multiplied by a factor 1/
√
V : hence the plane wave expan-

sion of the field operator is written

φ(x) =
∑
k

1√
2ωkV

(
a(k)e−ik·x + a∗(k)eik·x

)
. (4.37)
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The non-trivial equal time canonical commutation relation then becomes

[â(k), â∗(k′)] = δk,k′ , (4.38)

where δk,k′ = δn1n′1
δn2n′2

δn3n′3
.

To summarise, we have discovered that the field theory behaves very much
like infinitely many harmonic oscillators, labelled by their wavenumber k, and
with a different frequency ωk =

√
(k2 + m2). We will see that the occupation

number n of each oscillator actually corresponds to the number of particles with
that particular momentum in the state considered. The raising and lowering
operators â∗(k) and â(k) are also called creation and annihilation operators,
because they change the number of particles with 3-momentum k in a state.

4.3 States of the scalar field; zero point energy

In this section we will drop the hat notation for operators, unless there could be
ambiguity, as all fields will be assumed to be operators unless otherwise specified.
We saw in the previous section that the scalar field could be decomposed into
a sum over operators obeying oscillator-like commutation relations, one pair for
each wavevector k. It will therefore be no surprise to see that the states of the
quantum field theory are just towers of oscillator states, one for each k. The
ground state is defined as the state annihilated by all the annihilation operators:

a(k)|0〉 = 0, ∀k. (4.39)

We can use the creation operators a∗(k) to construct excited states: for example,
the first excited state in mode k may be written

|k〉 = a∗(k)|0〉. (4.40)

The normalisation of these states follows from deciding that the vacuum state
has unit norm, that is 〈0|0〉 = 1. Thus

〈k′|k〉 = 〈0|a(k′)a∗(k)|0〉 (4.41)

= 〈0|a∗(k)a(k′)|0〉+ 〈0|0〉(2π)3δ(k− k′). (4.42)

The first term on the right hand side vanishes, and so we have that the first
excited states satisfy the normalisation condition

〈k′|k〉 = (2π)3δ(k− k′). (4.43)

The corresponding completeness relation is

∫ d3k

(2π)3

1

2ωk

|k〉〈k| = 1. (4.44)
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The states |k〉 are interpreted in quantum field theory as single-particle states,
an interpretation discussed further below. We could continue applying creation
operators a∗(k1), a∗(k2), . . . to make states

|k,k1,k2, . . .〉 = . . . a∗(k2)a∗(k1)a∗(k)|0〉. (4.45)

The general state could have multiple applications of creation operators with the
same momenta, in which case it is conventional to divide by a symmetry factor,
to obtain

|{nk}〉 =
∏
k

(a∗k)nk

√
nk!
|0〉, (4.46)

where nk is the number of times the creation operator with label k is applied.
The Hilbert space spanned by the set of all states |nk〉 is called Fock space.
The basis states are interpreted as multiparticle states, which demonstrates one
of the special features of field theory: it is a quantum mechanical theory of
many particles. Ordinary non-relativistic quantum mechanics describes only one
particle at a time.

There is an operator which allows us to count the number of particles in a
given state. Let us first introduce the set of operators n̂(k) by

n̂(k) = a∗(k)a(k). (4.47)

It is straightforward to see that they return zero when acting on the ground state,

n̂(k)|0〉 = 0, (4.48)

from the definition of the vacuum state (4.39). When acting on 1-particle states,
we find

n̂(k)|k′〉 = a∗(k)a(k)a∗(k′)|0〉 (4.49)

= a∗(k)
(
a∗(k′)a(k) + 2ωk(2π)3δ(k− k′)

)
|0〉, (4.50)

where we have used the commutation relations (4.33) to change the order of a(k)
and a∗(k′). Thus,

n̂(k)|k′〉 = 2ωk(2π)3δ(k− k′)|k〉. (4.51)

The operators n̂(k) are used to construct the number operator

N =
∫ d3k

(2π)3

1

2ωk

n̂(k), (4.52)

which tells us the total number of particles in a particular state2. Thus, as
expected, N |0〉 = 0, meaning that there are no particles in the ground state. In
the 1-particle state |k′〉, we find

Ntot|k′〉 =
∫ d3k

(2π)3
N(k)|k′〉 =

∫ d3k

(2π)3
(2π)3δ(k− k′)|k〉 = |k′〉. (4.53)

2if that state has a definite particle number – it may be that the state is not an eigenvalue
of the number operator
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The state |k′〉 is indeed an eigenstate of the number operator, with eigenvalue 1
– there is 1 particle in state. When applied to the general state (4.46), it can be
shown that

N |{nk}〉 =
∫ d3k

(2π)3
nk|{nk}〉. (4.54)

The energy of the states can be computed from the quantum energy operator

Ê =
∫
d3xθ0

0(x) =
∫
d3x

(
1

2
π̂2 +

1

2
(∇φ̂)2 +

1

2
µ2φ̂2

)
, (4.55)

which is immediately seen to be identical to the Hamiltonian. Since the simple
states we have seen so far have been constructed from creation operators a∗(k)
acting on the vacuum, it is more convenient to re-express the Hamiltonian oper-
ator H in terms of creation and annihilation operators. Recalling the expansions
of φ and π in terms of a(k) and a∗(k) in equations (4.18) and (4.20), we find

H =
∫ d3k

(2π)3

1

2ωk

ωk

2
(a∗(k)a(k) + a(k)a∗(k)) . (4.56)

If we try to change the order of the operators, we run into a problem, for

Ĥ =
∫ d3k

(2π)3

1

2ωk

ωk

2

(
2a∗(k)a(k) + (2π)3δ(0)ωk

)
. (4.57)

The second term in the brackets has the formally infinite term (2π)3δ(0). The
source of this infinity is the fact that we are working in infinite spatial volume.
Let us revert to a finite cubic region with sides of length L, in which case we can
write

(2π)3δ(0) = lim
L→∞

lim
k′→k

∫ L/2

−L/2
d3xeix·(k−k′) = lim

L→∞

∫ L/2

−L/2
d3x = V, (4.58)

where V is a formal volume factor, and the limit of infinite volume should strictly
be taken at the end of the calculation of any physical quantity. Thus we can
interpret the quantity multiplied by V as an energy density. However, even this
energy density is infinite, in general. Suppose we try to find the energy density
of the ground state ρ0, for which

H|0〉 =
∫
d3xρ0|0〉 =

∫ d3k

(2π)3
ωka

∗(k)a(k)|0〉+
1

2

∫ d3k

(2π)3

1

2ωk

ωk(2π)3δ(0)|0〉.

(4.59)
Hence,

ρ0 =
1

2

∫ d3k

(2π)3
ωk. (4.60)

39



This integral is divergent. If we integrate the momenta over the range 0 < |k| <
Λ, with the upper cut-off in the integration range Λ � µ, we find that the
dominant behaviour in the integral is

ρ0 ∼
∫ Λ

dkk3 ∼ Λ4. (4.61)

that As we take Λ to infinity, the ground state energy diverges as the fourth power
of the cut-off in the momentum – we say that the integral is quartically divergent.
Thus the ground state energy density of a field theory appears to be infinite.
This is the first of many infinities in quantum field theory, and the way of dealing
with this, and all others, is to renormalise, that is, to subtract off unobservable
quantities. We say that the absolute value of the the energy of the ground state
is unobservable: all we see is differences between that state and others. Thus we
measure all energies relative to the ground state by subtracting the term which
gives the infinite value for the ground state energy, 1

2

∫
d3kωkδ(0), and we define

a new, renormalised Hamiltonian

Hren = H − 1

2

∫
d3kωkδ(0) =

∫ d3k

(2π)3

1

2ωk

ωka
∗(k)a(k). (4.62)

This has the sensible property that Ĥren|0〉 = 0 – the ground state energy is zero.
You might like to check that the energy of the state |k′〉 is indeed ωk′ : a simple
way to start is to note that

Hren =
∫ d3k

(2π)3
ωkn(k), (4.63)

and use Eq. (4.51).
We can subtract off ground state energies automatically by a procedure known

as normal ordering. When we place an operator in normal order, we write it so
that all the creation operators are to the left, and all the annihilation operators
are to the right, so for example

:a(k)a∗(k′): = a∗(k′)a(k). (4.64)

Hence,
:H: = Hren. (4.65)

4.4 Particle interpretation of states

We shall finish this section by returning to the justification for interpreting the
states of the field as multiparticle states. Let us first compute the energy of a
one-particle state:

Hren|k〉 =
∫ d3k′

(2π)3

1

2ωk′
ωk′n̂(k′)|k〉 = ωk|k〉. (4.66)
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Hence the energy of the state we have decided is a one-particle state is ωk, which
we recall is equal to

√
(k2 + m2), the energy of a relativistic particle of mass m

and momentum k. Thus in order to strengthen our case we should check that
the momentum of the state |k〉 is indeed k.

The momentum operator in field theory is

P =
∫
d3x

˙̂
φ(x)∇φ(x) =

∫ d3k′

(2π)3

1

2ωk′
kn̂(k). (4.67)

There is in fact no need to normal order the momentum operator, as the mo-
mentum of the vacuum is zero as a result of its translational invariance. Thus we
may evaluate the momentum of the state |k〉 through

P|k〉 =
∫ d3k′

(2π)3

1

2ωk′
k′n̂(k′)|k〉 = k|k〉. (4.68)

Thus the state |k〉 is an eigenstate of the momentum operator, with eigenvalue
k, properties we expect from a one-particle state.

The state is also rotationally invariant (a property following from the ro-
tational invariance of the scalar field), and hence describes a spinless particle.
Lastly, multiparticle states automatically have the correct Bose symmetry. Con-
sider a state of two particles with momenta k1 and k2. Then

|k1 k2〉 = a∗(k1)a∗(k2)|0〉a∗(k2)a∗(k1)|0〉 = |k2 k1〉, (4.69)

which shows that the quantum state is symmetric under the exchange of parti-
cles. This property stems from the canonical commutation relations of the field
operators.

4.5 The Electromagnetic Field

In order to quantise the electromagnetic field we shall follow exactly the same
procedure as we did for the real scalar field. We shall find the dynamical coor-
dinates, identify the conjugate momentum, and impose canonical commutation
relations between them. However, we should be aware that there are extra com-
plications not present for the real scalar field. Firstly, there is gauge invariance:
recall that the transformation Aµ → Aµ − ∂µΛ does not change any physical
quantity associated with the field, which means we are in danger of encoutering
unphysical degrees of freedom when we use Aµ as the dynamical coordinates.
Secondly, the conjugate momentum to Aµ looks like it should be

πµ =
∂L

∂(∂0Aµ)
= F 0µ. (4.70)

But this means that A0 does not have a canonical momentum, as π0 vanishes
identically.
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Our approach to dealing with these problems is to choose a gauge from the
outset, trying to leave only physical degrees of freedom in the Lagrangian. In this
section the gauge will be the Coulomb gauge, or ∂iA

i = 0. In this gauge, A0 is
entirely determined at any time by the charge distribution, through the equation

−∇2A0 = ρ, (4.71)

and it is therefore not a true dynamical coordinate. In free space, that is, in the
absence of charges or currents, we are entitled to set it to zero.

We recall the action of the electromagnetic field, in the absence of an external
4-current:

S =
∫
d4xL = −

∫
d4x

1

4
FµνF

µν ,

where Fµν = ∂µAν − ∂νAµ. In the Coulomb gauge, this action is equivalent to

SCg =
∫
d4xLCg =

∫
d4x

(
1

2
ȦiȦi − 1

2
∂jA

i∂jA
i
)
. (4.72)

Thus the momentum conjugate to Ai is

πi =
∂LCg

∂Ȧi
= Ȧi = −Ei, (4.73)

and the Hamiltonian density is

HCg = πiȦ
i − LCg =

1

2
ȦiȦi +

1

2
∂jA

i∂jA
i. (4.74)

At this point it would seem natural to impose a commutation relation 3

[Ai(x, t), πj(x
′, t)]

?
= iδijδ(x− x′), (4.75)

based on our experience with scalar fields. This is incorrect, as differentiating
both sides with respect to xi quickly shows. The gauge condition ∂iA

i = 0
implies that the left hand side vanishes. However,

[∂iA
i(x, t), πj(x

′, t)] = i∂jδ(x− x′) 6= 0. (4.76)

The derivative of a δ-function is not zero. So we need a more general function
∆ij(x,x

′) for the right hand side of the CCR, which satisfies ∂i∆ij(x,x
′) = 0

(and also ∂′j∆ij(x,x
′) = 0, as one can easily check by substituting for πj in the

commutation relations). We also know that the dependence on x and x′ must be
in the combination x− x′ through translational invariance.

3Note that as this is not a covariant equation, there is no need for covariant and contravariant
indices to balance on both sides of the equation.
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It is easier to find the function ∆ij(x− x′) in Fourier space: we write

∆ij(x− x′) =
∫ d3k

(2π)3
∆̃ij(k)eik·(x−x′). (4.77)

Then

∂i∆ij(x− x′) = i
∫ d3k

(2π)3
ki∆̃ij(k)eik·(x−x′) = 0, (4.78)

from which we infer that
ki∆̃ij(k) = 0. (4.79)

The solution to this equation is

∆̃ij(k) =

(
δij −

kikj

k2

)
F̃ (k), (4.80)

where F (k) is some function of k. The correct function is just F = 1: this keeps
the function ∆ij(x−x′) as close as possible to the δ-function. Thus the canonical
commutation relations in the Coulomb gauge are

[Ai(x, t), Ej(x′, t)] = −i
∫ d3k

(2π)3

(
δij −

kikj

k2

)
ẽik·(x−x′). (4.81)

This we can write

[Ai(x, t), Ej(x′, t)] = −i
(
δij −

∂i∂j
∇2

)
δ(x− x′), (4.82)

where ∇−2 is the inverse of ∇2 = ∂i∂i, and can be thought of as being defined in
terms of its Fourier transform. Given any function f(x) with Fourier transform
f̃(k), ∇−2f(x) is that function whose Fourier transform is k−2f̃(k). One can now
verify that the Coulomb gauge commutation relations 4.82 are now consistent
with the gauge condition ∂iA

i = 0.
As we saw in Section 2.3.1, the free space Coulomb gauge equations of motion

for the electromagnetic field are

(∂2
0 − ∂2

j )A
i(t,x) = 0,

which have the general solution

Ai(t,x) =
∫ d3k

(2π)3

1√
2ωk

(
ai(k)e−ik·x + a∗i(k)eik·x

)
,

where kia
i = 0. Thus the three components of the vector amplitude ai(k) are not

independent: they satisfy a constraint arising from the Coulomb gauge condition.
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Rather than worry about this constraint all the time, it is much more convenient
to have two freely chosen functions of k, so we instead write the general solution

Ai(t,x) =
∑
λ=1,2

∫ d3k

(2π)3

1√
2ωk

(
a(λ)ε

i
(λ)e

−ik·x + a∗(λ)ε
∗
(λ)

ieik·x
)
. (4.83)

The εi(λ) are called polarisation vectors, and have the properties

kiεi(λ) = 0, εi(λ)ε
i
(λ′) = δλλ′ . (4.84)

These conditions mean that, along with k̂i = ki/|k|, the two polarisation vectors
form an orthonormal basis for 3-vectors. The completeness property therefore
follows:

εi(1)ε
j
(1) + εi(2)ε

j
(2) + k̂ik̂j = δij, (4.85)

or
∑
λ ε

i
(λ)ε

j
(λ) = δij − k̂ik̂j.

Upon quantisation, the independent amplitudes a(λ)(k) become operators,
and by substituting the expansions for Ai(t,k) and Ej(t,x′) into the canonical
commutation relations, and using the properties of the polarisation vectors, one
discovers the commutation relations for a(λ)(k) and a∗(λ)(k):

[a(λ)(k), a∗(λ′)(k
′)] = δλλ′(2π)3δ(k− k′). (4.86)

Thus each polarisation behaves like an independent scalar field.
As before, we can define a vacuum state |0〉 satisfying

a(λ)(k)|0〉 = 0, ∀k, λ. (4.87)

Other states are derived from the vacuum by acting with raising operators. For
example, there is a set of “first excited states”

|k, λ〉 = a∗(λ)(k)|0〉. (4.88)

Note that there is an extra label, λ, which indicates the polarisation of the elec-
tromagnetic field in the state. The quantised states of the electromagnetic field
are of course the particles known as photons.

Last in this section, we write down the Hamiltonian for the electromagnetic
field in terms of the ladder operators in its normal-ordered form:

:H: =
∫
d3x :H: =

∫ d3k

(2π)3

∑
λ

ωka
∗
(λ)(k)a(λ)(k). (4.89)

This is just two copies of the renormalised scalar field Hamiltonian (4.62), one
for each polarisation.
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Figure 6.1: A scattering experiment. A set of particles with momenta
k1, k2 come in from a large separation a long time in the past, interact,
and head out towards infinity again in a different state, where they
have different momenta. There may also be a different number of
particles of various species in the final state. infinity, interact,

5 Path integrals

6 Interacting fields

So far we have been dealing with free field theories, which we have been able to
solve exactly. Thus we have found the equations of motion for the field operators,
solved them in terms of a sum of operator-valued Fourier modes (a(k), b(k)
and their complex conjugates) and found all the possible quantum states. The
dynamics of a free field theory are therefore rather trivial: one decides which
state (or superposition of states) the field is in at some initial time, and the field
then remains in this state for all subsequent times.

We would like to able to describe more realistic situations in which the field
changes its state. Field theory was developed to describe the result of scattering
experiments in which a few particles head towards each other from a long distance,
interact, and the resulting particles (there may be more than the incoming set)
then head back to infinity again (see Figure 6.1). The goal is to calculate the
quantum mechanical amplitude for the initial state to change in to the final state.
From this we can calculate the transition probability, which is usually expressed
as a cross-section.

Unfortunately, it is almost always impossible to calculate these probabilities
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exactly, and one must use a perturbation expansion in some small number which
parametrises the strength of the interaction – a coupling constant. For example, q,
the charge of the complex scalar field of the previous section, is such an expansion
parameter, which we must assume to be small. Most of the technical complexity
of quantum field theory is due to the difficulty of writing this expansion in a
manageable way, and in then in making sense of the expressions once they have
been written down. The breakthrough that made field theory calculations feasible
was Feyman’s realisation that the perturbation expansion could be written down
in a graphical way with Feynman diagrams. The procedure of making sense of
the result, which is formally infinite, is renormalisation.

6.1 The interaction picture

In order to develop this expansion we must first recall some results from ordinary
time-dependent perturbation theory in quantum mechanics. There are three
ways of looking at the time evolution of a state in quantum mechanics, which
are equivalent in the sense that all operators (which correspond to observable
quantities) have the same matrix elements. These ways are called “pictures”.

Schrödinger picture This is probably the most familiar picture. The time
dependence of the system is carried in the states, while the operators OS are
time-independent. The time-dependent states |ψ(t)〉S obey the Schrödinger
equation

i
d

dt
|ψ(t)〉S = H|ψ(t)〉S, (6.1)

where H is the Hamiltonian.

Heisenberg picture In this picture, it is the states |ψ〉H that are time-independent,
and the time evolution of the system is transferred to the operators OH(t),
which satisfy the Heisenberg equations

i
d

dt
OH(t) = [OH(t), H]. (6.2)

The states and operators in these two pictures can be related by a unitary
transformation eiHt (a unitary operator is one whose inverse is its hermitean
conjugate). Thus, if we suppose that the two sets of operators and states
coincide at t = 0, they are related at all times by

OH(t) = eiHtOSe
−iHt

|ψ〉H = = eiHt|ψ(t)〉S. (6.3)

This ensures that the matrix elements are the same. To see this, let us
consider the matrix elements between any two states |ψ〉H and |ψ′〉H in the
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Heisenberg picture, and apply these transformations:

H〈ψ|OH(t)|ψ′〉H = S〈ψ(t)|e−iHteiHtOSe
−iHteiHt|ψ′(t)〉S

= S〈ψ(t)|OS|ψ′(t)〉S. (6.4)

This demonstrates the point.

Interaction picture This picture is the one suited for situations in which we
can’t solve the Schrödinger (or Heisenberg) equation exactly for our Hamil-
tonian H, but we can split it into two parts, one solvable with Hamiltonian
H0, and the other H ′ which is small compared to H0:

H = H0 +H ′. (6.5)

In the interaction picture, the time dependence is divided between the op-
erators and the states. The operators evolve according to the Heisenberg
equations for the solvable Hamiltonian H0,

OI(t) = eiH0tOSe
−iH0t, (6.6)

which means that the states must be related to the Schrödinger picture
states by

i
d

dt
|ψ(t)〉I = eiH0t|ψ(t)〉S. (6.7)

Thus by differentiating both sides with respect to time,

i
d

dt
|ψ(t)〉I = eiH0t(−H0 +H)|ψ(t)〉S = (eiH0tH ′e−iH0t)eiH0tketψ(t)S. (6.8)

The piece is brackets o the right hand side is just the interaction picture
representation of the interaction Hamiltonian, which we write H ′(t)I . Thus

i
d

dt
|ψ(t)〉I = H ′(t)I |ψ(t)〉I . (6.9)

Thus the interaction picture states evolve according to the non-trivial part
of the Hamiltonian only. In the limit H ′ → 0, the interaction picture
reduces to the Hesinberg picture.

The interaction picture state evolution equation has a formal solution which
is

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I , (6.10)

where U(t, t0) is an operator which satisfies the equation

i
∂

∂t
U(t, t0) = H ′(t)IU(t, t0), (6.11)
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Figure 6.2: The simplification of the integration region in Equation
(6.14). The orginal integration is over the darker shaded area, but
by using the symmetry of the integrand and careful time ordering the
region can be extended over the entire shaded area.

with the boundary condition U(t, t0) = 1, the identity operator. We can convert
this into an integral equation

U(t, t0) = 1− i
∫ t

t0
dt1H

′
I(t1)U(t1, t0), (6.12)

which we solve by iteration. The starting point is to take U(t, t0) = 1. We
substitute this back into the integral equation, from which we obtain

U (1)(t, t0) = 1− i
∫ t

t0
dt1H

′
I(t1). (6.13)

Substituting again, we get

U (2)(t, t0) = 1− i
∫ t

t0
dt1H

′
I(t1)U (1)(t1, t0)

= 1 + (−i)2
∫ t

t0
dt1

∫ t1

t0
dt2H

′
I(t1)H ′I(t2). (6.14)

We can simplify the integration region by exploiting the symmetry of the inte-
grand, and by using the time ordered product introduced in Section (??). Note
first that we are integrating over the darker shaded area in Figure (6.2). Let us
now rewrite the second order term in Equation (6.14) as

(−i)2

2

∫ t

t0
dt1

∫ t1

t0
dt2H

′
I(t1)H ′I(t2) +

(−i)2

2

∫ t

t0
dt2

∫ t2

t0
dt1H

′
I(t2)H ′I(t1). (6.15)
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All we have done here is to divide the integration into two and interchange the
integration variables in the second term. In doing so, we can see that the second
term is effectively an integration over the lighter shaded area. In both terms the
earlier time appears to the right. Thus we may write this as

(−i)2

2

∫ t

t0
dt1

∫ t

t0
dt2T [H ′I(t1)H ′I(t2)] . (6.16)

It is not too hard to satsify oneself that the nth term in this iteration involves
the time ordered product of n copies of the Hamiltonian, with a symmetry factor
of 1/n!. Hence

U(t, t0) =
∑
n

(−i)2

n!

∫ t

t0
dt1 . . .

∫ t

t0
dtnT [H ′I(t1) . . . H ′I(tn)] . (6.17)

This can be written more compactly as

U(t, t0) = T
[
exp

(
−i
∫ t

t0
dt′H ′I(t

′)
)]
, (6.18)

where the operation of time ordering on an exponential is defined by its operation
on the individual terms in the Taylor series.

6.2 The S-matrix and transition amplitudes

In principle, the matrix U(t, t0), whose formal solution we found in the previous
section, completely determines the time evolution of the system. In scattering
processes, we are generally not interested in the intermediate times when the
particles are interacting, only in how the states in the distant past change into
other states in the future. We assume that interactions are localised in space and
time, which amounts to assuming that H ′I(t)→ 0 as t→ ±∞. Hence

|Ψ(t)〉I → |Ψ(±∞)〉I , (6.19)

which are states of the free Hamiltonian H0. We define the S-matrix to be

S = lim
t→+∞t0→−∞

U(t, t0), (6.20)

so that
|Ψ(+∞)〉I = S|Ψ(−∞)〉I . (6.21)

We call states |Ψ(−∞)〉I in states, and |Ψ(+∞)〉I out states. In order to reduce
the amount of typing, they will be denoted |i〉 and |f〉 respectively.

In a scattering experiment, we prepare the system in a state |Ψ(t)〉I at t →
−∞, and we would like to be able to compute the amplitude for a quantum
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mechanical transition to any other state |Φ(t)〉 as t → +∞. The probability
amplitude for this transition is

AΦΨ = lim
t→+∞ I〈Φ(t)|Ψ(t)〉I =I 〈Φ(+∞)|S|Ψ(−∞)〉I . (6.22)

Simplifying the notation, the probabilty amplitude for the transition from an in
state |i〉 to an out-state |f〉 is

Afi = 〈f |S|i〉 ≡ Sfi. (6.23)

That is, the matrix elements of the S-matrix give the transition probability am-
plitudes between initial and final states.

The S-matrix has a number of very important properties, the first of which is
that probability must be conserved. That is, if we prepare an in-state with unit
probability, the sum of all the probabilities of the out-states must also be unity.
Thus we are assuming that 〈i|i〉 = 1, and that this normalisation is preserved
throughout the evolution: that is, I〈Ψ(+∞)|Ψ(+∞)〉I = 1 also. Hence

〈i|S†S|i〉 = 1. (6.24)

Let us insert a complete set of out-states:

1 =
∑
f

|f〉〈f |, (6.25)

so that ∑
f

〈i|S†|f〉〈f |S|i〉 = 1, (6.26)

or ∑
f

S∗ifSfi = 1. (6.27)

Thus the conservation of probability demands that the S-matrix be unitary
(S†S = 1).

Finally for this section it is important to point out a major problem with
this approach to dealing with interactin field theories. The interaction picture
Hamiltonian H ′I(t) does not become negligible as t → ±∞, because particles
are always interacting with themselves. The result of these self-interactions is to
shift the mass and charge of the particle by an infinite amount, although this
only happens at second order in the perturbation expansion for S. These infinite
shifts must be dealt with by the procedure of renormalisation.
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A Problem Sheets

A.1 Problem Sheet 1

1. In the following, xµ is a 4-vector, and ∂µ ≡ ∂
∂xµ

.

(a) Show that

∂µx
ν = δνµ, ∂µxν = ηµν , ∂µxν = δµν , ∂µxν = ηµν ,

and show that ∂ · x = 4.

(b) Show that, if φ(x) = Ae−ip.x, with p a constant 4-vector, then (∂2 +
m2)φ(x) = (−p2 +m2)φ(x).

(c) Given the function f(x) = e−
1
2
ax2
, where a is a constant scalar, calcu-

late ∂µ∂νf(x) and show that ∂2f(x) vanishes on the curve x2 = 4/a.

2. (a) Let ψ(x, t) be a wave function satisfying the Schrödinger equation

ih̄
∂

∂t
ψ = − h̄2

2m
∇2ψ + V (x)ψ.

Show that the probability density ρ = |ψ|2 and the probability current
j = −i(ψ∗∇ψ − ψ∇ψ∗)/2m satisfy a continuity equation

ρ̇+∇·j = 0.

(b) Let φ(x) be a complex-valued field satisfying the Klein-Gordon equa-
tion

∂2φ+m2φ = 0.

Show that the 4-vector current

Jµ = − i
2
φ∗∂µφ+

i

2
φ∂µφ∗.

satisfies a covariant continuity equation ∂ · J = 0. Give a reason why
Jµ can not be a probability current.

3. Let φ(x) be a real scalar field, with Lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ),

where the potential energy density is given by

V (φ) =
1

4

µ4

λ
− 1

2
µ2φ2 +

1

4
λφ4.

Note that λ and µ2 are both real and positive.
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(a) Write down the Euler-Lagrange equation for a real scalar field, and
hence derive the field equation obeyed by φ.

(b) Find the solutions with φ constant, and show also that

φ(z) = v tanh (mz)

is a solution, provided v =
√
µ2/λ and m = µ/

√
2.

(c) By considering the properties of φ under a Lorentz transformation, or
by explicit evaluation of the field equation, show that

φ(t, z) = v tanh[mγ(z − vt)],

with γ =
√

(1− v2), is also a solution,.

4. (a) Show that εijkεklm = δilδjm− δimδjl, and use this relation to show that
∇×B = −∇2A +∇(∇ ·A). (The components of ∇×B in terms of
Bi, the components of B, are (∇×B)i = εijk∂jBk).

(b) We define the dual electromagnetic field strength tensor as

F̃µν =
1

2
εµνρσF

ρσ,

where εµνρσ is the 4-dimensional Levi-Civita tensor. Show that F̃0j =
−Bj and F̃ij = εijkEk, and hence verify that the 4-vector equation

∂νF̃µν = 0

correctly reproduces the two homogeneous Maxwell equations.
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A.2 Problem Sheet 2

1. A real scalar field has Lagrangian density

L =
1

2
∂µφ∂µφ− V (φ),

where V (φ) is bounded from below.

(a) Calculate the canonical energy-momentum tensor θµν from this La-
grangian density, using the formula derived in the lectures.

(b) Calculate the Hamiltonian density H, and verify that it is equal to the
energy density θ00(x).

(c) Verify, using the field equation ∂2φ + V ′(φ) = 0, that the energy-
momentum tensor is conserved (satisfies ∂µθ

µν = 0).

2. (a) Consider a real scalar field whose Lagrangian is of the same form as
the Problem 1, with V (φ) = 1

2
m2φ2. Find the Hamiltonian operator

Ĥ, and show that the Heisenberg equations of motion

˙̂
φ(x) =

1

i

[
φ̂(x), Ĥ

]
, ˙̂π(x) =

1

i

[
π̂(x), Ĥ

]
,

imply that (∂2 +m2)φ̂(x) = 0.

(b) Write down the Lorentz transformation which takes the 4-vector kµ =

(ωk, k
i), where ωk = |(k2 + m2)

1
2 |, to a frame moving with velocity v

in the x direction relative to the original.

(c) By applying the Lorentz transformation of the previous part, or oth-
erwise, show that the momentum integration measure d3k/(2π)32ωk is
Lorentz invariant,
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3. The real scalar field operator is expanded in terms of ladder operators âk

and â∗k as

φ̂(x) =
∫ d̄ 3k

2ωk

(âkfk(x) + â∗kf
∗
k(x)) ,

where fk(x) = e−ik·x, with k0 = ωk ≡ |(k2 +m2)
1
2 |.

(a) Show that the functions fk(x) obey orthogonality requirements

i
∫
d3x (f ∗k(x)∂0fk′(x)− ∂0f

∗
k(x) fk′(x)) = 2ωk δ̄

3(k− k′),

i
∫
d3x (fk(x)∂0fk′(x)− ∂0fk(x) fk′(x)) = 0.

(b) Show that

âk = i
∫
d3x

(
f ∗k(x)π̂(x)− ∂0f

∗
k(x)φ̂(x)

)
,

where π̂(x) = ∂0φ̂(x) is the canonical momentum operator.

(c) Show that the non-trivial commutation relation for the ladder opera-
tors is

[âk, â
∗
k′ ] = 2ωk δ̄

3(k− k′).

4. The number operator for a real scalar field is defined as

N̂ =
∫ d̄ 3k

2ωk

â∗kâk,

where â∗k and âk are the ladder operators, which obey the commutation
relation of Problem 3.

(a) Show that [N̂ , (â∗k)n] = n(â∗k)n.

(b) Hence, or otherwise, show that the state

|{nk}〉 =
∏
k

(â∗k)nk

√
nk!
|0〉

is an eigenstate of the number operator with eigenvalue

N = V
∫ d3k

(2π)3
nk,

where V is a formal volume factor.

NB The product over the continuous variable k is defined as∏
k

= lim
L→∞

∏
m

,

where k = 2πm/L, and m = (m1,m2,m3), with m1, m2, m3 integers.
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A.3 Problem Sheet 3

1. Consider the one-parameter family of Lagrangians

Lζ = −1

4
FµνF

µν − ζ

2
(∂ · A)2.

(a) Find the field equations for the gauge potential Aµ which result from
this family.

(b) Show that they all give the same field equations in the Lorentz gauge.
What is special about the field equations when ζ = 1?

(c) Show that the Lagrangian

L = −1

2
∂µA

ν∂µAν

gives the same field equations as L1, and find L − L1. Why is it that
L and L1 give the same field equations?

2. (a) Starting with the Lagrangian L = −1
2
∂µA

ν∂µAν , show that the asso-
ciated Hamiltonian density H is

H = −1

2
ȦµȦ

µ − 1

2
∇Aµ∇Aµ.

(b) What is strange about this Hamiltonian density?

(c) Given the expansion of the electromagnetic field operator in a plane
wave basis

Âµ(x) =
∫ d̄ 3k

2ωk

(
âµke

−ik·x + â†µk e
ik·x
)
,

with k0 = ωk = (k2 +m2)
1
2 , show that

:H: =
∫
d3x:H: = −

∫ d̄ 3k

2ωk

ωkâ
†µ
k âkµ.

(d) Re-expressing the ladder operators in a polarisation basis âµk = εAk âkA,
show that if |φ〉 is a physical state, then

:H:|φ〉 =
∫ d̄ 3k

2ωk

ωk (ak1ak1 + ak2ak2) |φ〉.

Comment on this result in the light of Question 2b.

3. The 4-momentum operator for a real scalar field obeying the Klein-Gordon
equation is P̂ µ, with

P̂ 0 =
1

2

∫
d3x

(
π2 +∇φ2 +m2φ2

)
, P̂ i =

∫
d3xπ∂iφ.
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(a) Show that [P̂ µ, φ̂(x)] = −i∂µφ̂(x)

(b) Using the Baker-Campbell-Hausdorff formula

eÂB̂e−Â = [Â, B̂] +
1

2
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + . . .

show that, if aµ is a constant 4-vector,

eia·P̂ φ̂(x)e−ia·P̂ = φ̂(x+ a).

What does this tell us about the 4-momentum operator P̂ µ?

4. The scalar Feynman propagator is defined as the vacuum expectation value
of the time-ordered product of two fields

i∆F (x− y) = 〈0|T [φ̂(x)φ̂(y)]|0〉
= 〈0|φ̂(x)φ̂(y)|0〉θ(x0 − y0) + 〈0|φ̂(y)φ̂(x)|0〉θ(y0 − x0).

We split the field into its positive and negative frequency components
φ̂(x) = φ̂+(x) + φ̂−(x), where

φ̂+(x) =
∫ d̄ 3k

2ωk

ake
−ik·x, φ̂−(x) =

∫ d̄ 3k

2ωk

a†ke
ik·x

(a) Defining ∆+(x) = 〈0|φ̂+(x)φ̂−(0)|0〉, ∆−(x) = 〈0|φ̂+(0)φ̂−(x)|0〉, find
the Feynman propagator i∆F (x) in terms of ∆+(x) amd ∆−(x).

(b) Express the functions ∆+(x) and ∆−(x) in terms of integrals over wave
vectors k and show that they are Lorentz invariant.

(c) Show that ∆(x) = 〈0|[φ̂(x), φ̂(0)]|0〉 vanishes for x2 < 0. [Hint: take
x0 = 0]

(d) Discuss the interpretation of the Feynman propagator i∆F (x − y) as
the probability amplitude for a particle to propagate from y to x.

56



A.4 Problem Sheet 4

1. In the following, A(x), B(x), C(x), and D(x) are field operators.

(a) Show that :A(x1)B(x2): = :B(x2)A(x1):.

(b) Show that :A(x1)B(x2): = 0.

(c) Use Wick’s theorem to expand T [A(x1)B(x2)C(x3)D(x4)] in terms of
contractions and normal ordered products.

(d) How many ways are there of taking c contractions of n operators?

2. Consider a real scalar field theory with potential V (φ) = 1
2
φ2 + 1!

4!
λφ4.

A particular scattering process has four particles in the in-state, with 3-
momenta k1, k2, k3, and k4, and two particles in the out-state, with 3-
momenta k′1 and k′2. It is assumed that none of the momenta are equal.

The S-matrix element is written

〈k′1,k′2|S|k1,k2,k3,k4〉.

(a) Write down the Dyson-Wick expansion for the S operator, and show
that the O(λ0) and O(λ1) terms in the corresponding expansion of the
matrix element vanish.

(b) Apply Wick’s theorem to T [:φ4(x1)::φ4(x2):] and hence calculate the
O(λ2) contribution to the matrix element. You may leave your answer
in the form of a double integral over x1 and x2.
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3. (a) Write down the definition of the functional derivative of a functional
F [f ], defined on functions of a single real variable f(x). Show directly
from this definition that

δf(x)

δf(y)
= δ(x− y)

(b) For the functional

F [f ] = exp
(∫

dx b(x)f(x)
)

find δF [f ]
δf(x)

, and show that

δnF [f ]

δf(x1)δf(x2) . . . δf(xn)

∣∣∣∣∣
f=0

= b(x1)b(x2) . . . b(xn),

where the notation means that we evaluate the result of taking the
functional derivatives at f(x) = 0.

(c) Consider the functional

D[f ] = exp
(∫

dx b(x)f ′(x)
)
,

where f ′(x) = df(x)/dx. Show that δD[f ]
δf(x)

∣∣∣
f=0

= −b′(x).

4. Suppose the action for a particle of unit mass in the presence of a force
h̄j(t) is

Sj[q] =
∫
dt
(

1

2
q̇2 − V (q) + h̄jq

)
.

(a) Find the functional derivative δS[q]
δq(t)

, and show that

δ2S[q]

δq(t)δq(t′)
= −

(
∂2

∂t2
+ V ′′(q)

)
δ(t− t′).

(b) Let q̄(t) be an extremum of the action. If η(t) = q(t) − q̄(t) is the
deviation of the path from the extremal path, assumed small, show
that we may approximate the action by

Sj[q] ' Sj[q̄] +
1

2

∫
dt
(
η̇2 − V ′′(q̄)η2

)
.

Under what circumstances is this expression exact?
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A.5 Problem Sheet 5

1. (a) Write down the completeness relation for single-particle momentum
eigenstates in one dimension |p〉, and use it to show that

〈q|q′〉 =
∫ dp

2πh̄
eip(q−q

′)/h̄,

where |q〉 is a one-dimensional position eigenstate. Comment on your
result.

(b) The transition amplitude between two free particle position eigenstates
can be written

〈q, t|q′, t′〉 = 〈q|e−iĤ(t−t′)/h̄|q′〉,

where Ĥ = 1
2
p̂2. By inserting a complete set of momentum eigenstates,

show

K(q, t; q′, t′) ≡ 〈q, t|q′, t′〉 =
(

1

2πih̄T

) 1
2

exp

(
i

2h̄

(q − q′)2

T

)
,

where T = t − t′. Show also that K(q, t; q′, t′) solves the free particle
Schrödinger equation (ih̄∂t + 1

2
h̄2∂2

q )K(q, t; q′, t′) = 0.

(c) Write down the path integral expression for K(q, t; q′, t′) and show
when the time interval is split into segments ∆t = T/n that it can be
written in the form

K(q, t; q′, t′) = lim
n→∞

∫
dq1 . . . dqn−1

(
α

2π

)n−1
2

exp
(
−α

2
qTKn−1q + αbTq− c

)
,

where qT = (q1, . . . , qn−1), bT = (q′, 0, . . . , 0, q), Kn−1 is a tridiagonal
(n− 1)× (n− 1) matrix, and c and α = 1/ih̄∆t are constants.

Using the formula for a multidimensional Gaussian integral given in
the lectures, show that on performing the integral and taking the limit,
the same result as part (b) is obtained.

Hint 1: K−1
n−1 is symmetric, with (K−1

n−1)ij = i(n− j)/n, (i < j).

Hint 2: To find the determinant of K, prove and use the recursion
relation det Kn = 2 det Kn−1 − det Kn−2

59



2. (a) By rewriting the following equation in terms of sources J(x) and prop-
agators ∆F (x), verify that

1

i

δ

δJ(x1)

(
1

2
× ×

)
= rx1 ×,

1

i2
δ2

δJ(x1)δJ(x2)

(
1

2
× ×

)
= rx1 rx2

(b) Show, by using the results of (2a) that

1

i2
δ2

δJ(x1)δJ(x2)
exp

(
1

2
× ×

)
=

(rx1 rx2
+ rx1 × rx2 ×

)
exp

(
1

2
× ×

)
.

(c) The normalised generating functional for a free real scalar field is

Z[J ] = exp
(

1
2× ×

)
. Show that

1

i4
δ2

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
Z0[J ] =[ rx1 rx2 rx3 rx4

+ rx1 rx3 rx2 rx4
+ rx1 rx4 rx2 rx3

+rx1 rx2 rx3 × rx4 × + rx1 rx3 rx2 × rx4 × +rx1 rx4 rx2 × rx3 × + rx2 rx3 rx4 × rx1 × +rx2 rx4 rx3 × rx1 × + rx3 rx4 rx1 × rx2 × +rx1 × rx2 × rx3 × rx4 ×
]
Z0[J ],

and hence that the 4-point function for this theory is

G4(x1, x2, x3, x4) = −∆F (x1 − x2)∆F (x3 − x4)

−∆F (x1 − x3)∆F (x2 − x4)−∆F (x2 − x3)∆F (x1 − x4),

where ∆F (x1 − x2) is the Feynman propagator.

(d) Show that the odd functionsG2n+1(x1, . . . , x2n+1) = 〈0|T [φ̂(x1) . . . φ̂(x2n+1)]|0〉
all vanish.

(e) Show that

Z[J ] = 〈0|T
[
exp

(
i
∫
d4xJ(x)φ̂(x)

)]
|0〉.
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